
RPL Debugging and Rule
Diagnostics

July 2022

ii

Copyright 2021, The Regents of the University of Colorado. No distribution or reproduction.

These documents are copyrighted by the Regents of the University of Colorado. No part of this document may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, recording or otherwise without
the prior written consent of The University of Colorado. All rights are reserved by The University of Colorado.

The University of Colorado makes no warranty of any kind with respect to the completeness or accuracy of this document. The
University of Colorado may make improvements and/or changes in the product(s) and/or programs described within this
document at any time and without notice.

RPL Debugging and Rule Diagnostics: July 2022 iii
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Contents

1 Debugging a Rule . 1–1
1.1 Introduction and Preparation .1–1
1.2 Using the RPL Debugger .1–1
1.3 Summary .1–11

2 Debugging a RPL Error. 2–1
2.1 Introduction and Preparation .2–1
2.2 Enable the Debugger and Run .2–1
2.3 Summary .2–5

3 Using Diagnostics for Rule Debugging . 3–1
3.1 Introduction and Preparation .3–1
3.2 Analyzing Results .3–1
3.3 Using Diagnostics to Debug Rule Execution .3–3
3.4 Other Useful Diagnostic Categories .3–7
3.5 Summary .3–7

4 Advanced RPL Debugging. 4–1
4.1 Introduction and Preparation .4–1
4.2 Units in the RPL Debugger .4–1
4.3 Debugging a Rule with Multiple Statements .4–4

Using Breakpoints Within For Statements .4–5
Viewing items in a list .4–6
Using Temporary Logic for Debugging. .4–7

4.4 Debugging a FOR Expression .4–8
4.5 Summary .4–12

Contents

iv RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

1 Debugging a Rule

1.1 Introduction and Preparation

In this tutorial you will use the RPL Debugger to view the values of expressions and functions
in a rule.

The tutorial is part of the RPL Debugger and Diagnostics online tutorial. See the course player
for introductory and background information.

 Open the Arbor Basin model provided:

~\RiverWareTutorial\Models\ArborBasin_RPL_Debug.mdl.gz

The RBS ruleset is saved in the model.

 Run the model.

It completes successfully.

1.2 Using the RPL Debugger

To demonstrate the RPL debugger you will investigate a diversion shortage at the Juniper Irri-
gation district.

 Open the Juniper Irrigation object

 Expand the first item for Juniper Irrigation.
RPL Debugging and Rule Diagnostics: July 2022 1–1
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Highlight the Total Depletion Shortage and click the Plot button highlighted above.

The plot shows most values are zero, meaning no shortage, except during the end of
September and early October 2018. This exercise will show you how to use the RPL debugger
to understand this shortage.
1–2 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Let’s first identify a date to investigate.

 Right-click on the peak of the curve and select Global Time Scroll.

Depending on where you clicked, it will global time scroll to a date between Sep 25-Oct 3,
2018

 Click the Date Marker button (1), below, to show the red vertical line.

 Adjust the datetime spinner (2) to Sep 27, 2018. We could choose any date in this range, this
date is arbitrary at this point.

 Then click the Globe button (3) and select Global Time Scroll to scroll all dialogs to Sep 27th.

 Open the Run Control dialog box.

 Select the Pause Before Timestep check box, near the bottom.

 In the Timestep text box, enter Sep 27, 2018, or use the date selector to advance to the
timestep.
RPL Debugging and Rule Diagnostics: July 2022 1–3
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Select Start to run the model.

The run starts and continues until September 27, 2018, where it pauses.

Before we step into the timestep, we need to do two items: enable the RPL Debugger and set a
breakpoint in the RPL logic. In previous demos, we showed a number of ways to enable the
debugger, we’ll use an easy one here.

 Still on the Run Control, select View and then Show RPL Debugging Button.

 Click the button to enable the debugger:

Tip: Remember, enabling the RPL Debugger can slow down a model run,
so it should only be enabled when necessary for debugging purposes.

Now we need to set a breakpoint in the RPL logic. To do so, we need to know the rule or func-
tion that we want to investigate. Here is a brief summary of how Hickory Outflow and Juniper
diversions are set to meet Juniper demands and other objectives when water supply is limited:

• Rule 10 sets the Juniper Diversion.Minimum Diversion Bypass to pass either the gage flow
or the minimum flow.

• Rule 9 sets Hickory Outflow to pass the natural flows and interstate requirements.

• Rule 8 supplements Juniper diversions from Hickory storage if the natural flows are insuf-
ficient.

• Rule 7 cuts back the Hickory diversion and releases more water to meet Juniper

• Rule 6 cuts back the Hickory diversion even further if the Hickory Pool is below minimum.

• Rule 5 cuts back Hickory outflow if the Hickory Pool is still below the minimum.

Thus, in this ruleset, we expect Hickory to release water that can then be diverted by the
Juniper Irrigation District.

 If you aren’t familiar with this model, spend a few minutes understanding the transbasin
diversions from Cedar to Hickory, especially the link connections, and how water flows through
to Juniper Diversions.
1–4 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

We want to see why Rule 8 isn’t setting additional outflow for Juniper diversions.

 Open Rule 8.

You’ll notice a new column to the left of the logic. This is where you set breakpoints.

 Set a break point at the beginning of the rule by clicking at the top within the new column. See
screenshot below.

 Set a break point at the end of the rule execution by selecting again in the new column.

It should look like this:

Tip: Breakpoints can go before or after statements in a rule and before after
the body in a function.

 In the Run Control dialog box, select Step.

 The RPL Debugger will open.

The run pauses at the first break point. Notice:

1. The rule shows an orange arrow where the debugger is paused.

2. The top panel in the RPL Debugger shows the current location in the call stack.

3. The middle panel of the debugger lists the two break points.
RPL Debugging and Rule Diagnostics: July 2022 1–5
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 In the rule, select the function JuniperShortage() to highlight it.

Notice that the bottom panel in the debugger says, “No value associated with the selection.”
The statement has not yet been executed, so the expressions in the rule have not been evalu-
ated. When you see this message, it indicates the selected expression has not been evaluated
either because it hasn’t gotten there yet or because the logic prevents it from being evaluated,
for example, the expression is part of the other clause of an IF - ELSE.

 In the RPL Debugger, select Debug and then Show Button Labels.

This will help you get comfortable with the buttons. Now let’s step into the function and rules.

 In the RPL Debugger, select Step Into .

Notice the change in the Call Stack. You are now in the Juniper Shortage function, which was
the first function called from the rule.

 Select Step in the RPL Debugger.

The orange arrow advances below the Max expression.

 Select the Max expression in the Juniper Shortage function.

The value is shown in the bottom panel of the RPL Debugger AND as a tool tip:
1–6 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

This shows that the shortage is 20.43cms.

Tip: It is handy to keep the RPL Debugger and the RPL Viewer open at the
same time. Line these up so you can see both as you will be using them in
parallel.

From here, we could Step Out to get back up to the rule and evaluate the rest of the rule logic
or we could Step to go to the next place it could pause. In this case it would go to the Hickory-
CanSupplement function.

In this and many examples, we want to fully evaluate the rule and then see which values were
computed.

 Select Continue in the RPL Debugger to go to the next breakpoint.

The run pauses at the break point at the end of the Supplement Juniper from Hickory Storage
rule. Now the statement has evaluated, and you can look at the values of the individual expres-
sions.
RPL Debugging and Rule Diagnostics: July 2022 1–7
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Select AND within the IF expression. Then look at the value displayed at the bottom of the
RPL Debugger.

The bottom panel of the RPL Debugger and the tooltip says FALSE, indicating the boolean
expression is false. We saw before that JuniperShortage was 20.4cms, therefore the Hickory-
CanSupplement must be FALSE.

 Select HickoryCanSupplement and verify it returned FALSE in the debugger.

 Double-click HickoryCanSupplement to open it.
1–8 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Select the left expression, Hickory.Pool Elevation[], and see that it evaluated to 132.6m

Note: In the screenshots below and throughout these tutorials, we’ll show the
value as a tool tip for convenience. In your use, feel free to use the Value of
Selected Expression panel to see the value in the RPL Debugger.

 Select the HickoryMinSupplementElevation and see that it evaluated to 134m.

 Double click HickoryMinSupplementElevation and continue to explore the values returned.

Tip: This is the crux of the RPL Debugger, set up the breakpoints and
debugger so that it pauses just after the desired statement. Then select
various expressions to see their value and understand the solution.

 In the RPL Viewer or RPL Debugger, find the “Supplement Juniper from Hickory Storage” rule
(priority 8) and show it.

Note, the debugger is paused at the rule level after the assignment statement, but you can
explore the values of any expression that was computed in that logic. This is one of the most
common ways to use the debugger. Set the breakpoint at the rule level, after the statement, and
then drill down to find the desired values. See “4 Advanced RPL Debugging” for more
advanced debugging when loops are involved.

Question: So what did we learn in this exercise?

Answer: Juniper has a shortage because Hickory.Pool Elevation is too low to sup-
plement. The inflows are too low and no storage is available, so there
is a shortage.
RPL Debugging and Rule Diagnostics: July 2022 1–9
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Let’s see what happens for the rest of the timestep.

 First, delete the breakpoint at the start of rule 8. If click on an active breakpoint once, it will
show a red outline only, indicating that it is disabled. Click on in a second time to delete it.

 In the ruleset, open rules 7, 6, 5, and 4 and set a breakpoint after the logic in each rule.

Now you have 5 breakpoints, one after the logic in rules 4-8. This will allow us to see the
progression of execution and the values set. In Chapter “3 Using Diagnostics for Rule Debug-
ging”, we’ll see how diagnostics present similar information in a single view.

Your breakpoints panel should look like this:

 In the debugger, click Continue and then look at the values computed.

Repeat to see how the timestep progresses. The following table describes the solution
including the first evaluation of rule 8.

Rule Result

8 JuniperShortage = 20.43cms; Hickory could not supplement. The rule will be
ineffective

7 Hickory Diversion.Diversion Request is reduced and Hickory Outflow is
increased.

8 JuniperShortage = 0.1cms, but Hickory still could not supplement

7 Hickory Diversion.Diversion Request is reduced and Hickory Outflow is
increased.

8 JuniperShortage = 0.0cms so the rule will be ineffective

7 JuniperShortage = 0.0cms so the rule will be ineffective

6 The pool is less than the minimum, so Hickory Diversion is reduced.

6 The pool is less than the minimum, but there is no more Hickory Diversion to
cut back. The rule will be ineffective

5 The pool is less than the minimum, so Hickory Outflow is reduced.

8 Because of reduced Hickory Outflows, there is a shortage at Juniper of
20.44cms. The pool is too low to supplement. The rule will be ineffective.
1–10 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Now we are out of the timestep and paused in the run control.

Tip: If you wanted to go through this again, follow these steps: Stop the run
on the run control. Disable debugging. Start the run and let it run to
September 27. Enable debugging and then Step into the timestep pausing
in the RPL debugger at rule 8.

Setting a breakpoint and then pausing in each rule gives the values computed for each rule and
you can often infer what values will be set on the workspace, but due to priorities the values
might not get set if the slot value is already higher priority. Rule execution diagnostics provide
those details on the result of the rule and would give a similar sequence of rule execution as
shown in the table above. Diagnostics for debugging rules is described in “Using Diagnostics
for Rule Debugging” on page 3–1.

 In the Run Control, click the button that currently shows debugging is Enabled to disable RPL
debugging.

 On the Run Control, click Continue to complete the run.

1.3 Summary

In this tutorial, you saw how to use the RPL debugger to identify and highlight a value within
execution of RPL within rulebased simulation.

The RPL Debugger is used to look at the individual values returned by functions and expres-
sions in a rule at a specific timestep. This helps to verify that the rule was executing correctly.

7 There is a shortage and the computed diversionReduction is zero as the diver-
sion is already zero. The rule will be ineffective.

6 The pool is equal to the Min elevation. The rule will be ineffective.

5 The pool is equal to the Min elevation. The rule will be ineffective.

4 The pool is much less than the Max elevation. The rule will be ineffective.

Rule Result
RPL Debugging and Rule Diagnostics: July 2022 1–11
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

1–12 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

2 Debugging a RPL Error

2.1 Introduction and Preparation

This tutorial will show you how to use the RPL Debugger when you get an error in RPL eval-
uation. The learning objectives are as follows:

• Learn when to turn on the debugger

• Learn how to identify the issues

• Learn how to continue out of the debugger and fix the error.

 Open the Arbor Basin model provided:

~\RiverWareTutorial\Models\ArborBasin_RPL_Error.mdl.gz

This is a slightly different version of the Arbor Basin model used in Chapter 1. Again, the RBS
ruleset is embedded in the model.

 Run the model.

It errors on March 21, 2018:

The first message says what the error is and the next two red messages give the location. In a
full basin model, this error could include many levels of functions calls.

The debugger, if enabled, will take you directly to the location of the error and you can explore
the RPL evaluation.

This tutorial shows you how to use this feature to assist with error correction.

2.2 Enable the Debugger and Run

Let’s enable the debugger let it run to the error.

 On the Run Control, if not already shown, select View and then Show RPL Debugging
Button.
RPL Debugging and Rule Diagnostics: July 2022 2–1
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Click the disabled button to enable the debugger.

 Click Start

Because the debugger is enabled, the run progresses slowly, but is OK for this small model.

It stops on March 21 with the normal RiverWare abort notice.

 Click OK

The RPL Error notice is shown:

Note: Depending on the type of error and where it occurs, you may get this
dialog before or after the standard Error notice.

Tip: The debugger will only open for errors in RPL evaluation. If the error
occurs after a rule sets a value and the objects are dispatching, the RPL
debugger will not open.

 Click OK

The debugger opens and is shown as follows. The break points panels is automatically hidden.
2–2 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

The Call Stack Shows the Birch Elevation Min rule called the OutflowForMinElevationRules
and that called the Max function.

It is currently paused in the Max function

 Double click the Max function from the Call Stack.

In a predefined function, you can set breakpoints and pause, but there are no expression to
select so is not as useful for looking at values.

 In the debugger, double click the OutflowForMinElevationRules function.

Select the SolveOutflow expression and notice it evaluated to 2145.36cms
RPL Debugging and Rule Diagnostics: July 2022 2–3
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

The Max is comparing 2145.36cms to 0.00 with no units. That is the problem; the Max func-
tion requires unit types to be the same.

 Open the RPL Debugger again and in the Call Stack expand the row for the Max function.

Notice that the Call Stack in the RPL Debugger has those same values shown:

The Explanation of Error panel said it was “perhaps incompatible units”.

The Call Stack Max function showed the two arguments, one with FLOW units, the other with
NO UNITS.

The fix is to add units to the 0.0 expression. To do that, you need to get out of the debugger. In
this case, the stop button is disabled (we are in the middle of an abort error), so you must stop
the run to make any changes.

 Click the Continue button

The diagnostics open and show the rest of the messages. You now have control again from the
Run Control.

Find the OutflowForMinElevationRules in a RPL Viewer

 Double click 0.0 and change it to 0.0 cms.

 In the Run Control, disable the debugger and click Start.
2–4 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

It runs through with no errors.

2.3 Summary

In this tutorial, you saw how the debugger can be used to locate errors and show the values of
expressions at the time the error occurred. This can make it easier to debug RPL errors as you
don’t have to find the problem expression and set breakpoints. The debugger does that for you.
RPL Debugging and Rule Diagnostics: July 2022 2–5
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

2–6 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

3 Using Diagnostics for Rule Debugging

3.1 Introduction and Preparation

This tutorial shows how to use rulebased simulation diagnostics to report if a rule is executing
as expected. You will learn:

• The diagnostics that are most useful.

• For an early termination, how to track down the invalid value and potential fixes

 Open the Arbor Basin model provided:

~\RiverWareTutorial\Models\ArborBasin_RPL_DiagnosticDemo.mdl.gz

The RBS ruleset is embedded in the model.

 Run the model.

It completes successfully.

3.2 Analyzing Results

To make debugging meaningful, we need to point out a problem with the results from our
Arbor Basin run.

 Select the Plot button , then select the Elm Outflow Minimum plot.

The red dotted line shows the minimum flow; the green line shows the Elm.Outflow. What is
happening around August 5th, 2018? Why aren’t we meeting that minimum flow?
RPL Debugging and Rule Diagnostics: July 2022 3–1
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

We could use the RPL debugger to try to figure this out, but in this case, it will be easier to use
Diagnostics and look at the results of all rules that could set Elm.Outflow.

 Right click on the minimum point on the green curve on Aug 5, 2018 and select Global Time
Scroll.

 Select Model Run Analysis on the workspace main toolbar.

 In the Model Run Analysis dialog box, find Elm reservoir and it should be close to Aug 5th.

Question

Which rule set Elm Outflow on August 5, 2018?

Answer

Rule 14.

Also notice, adjacent timesteps were set by Rule 13.
3–2 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Rule 14 is the Elm Pool Elevation Target

Rule 13 is the Elm Outflow Min

This is unexpected. Rule 13 should keep the Outflow above the minimum flow requirement.
You will now use diagnostics to find out why Rule 13 did not take effect on this timestep.

3.3 Using Diagnostics to Debug Rule Execution

 On the workspace, select Utilities, then Diagnostics Manager.

 Check the box to Enable Informational Diagnostics.

 Select the Rulebased Simulation button in the Diagnostics Manager.

 In the “Show diagnostics for” panel, select the Rule Execution diagnostics groups. See the
image below.

 In the Rules context filter, click Select, then RBS Ruleset.

 Navigate through the rule selector and select rules 11 through 15.

Even though we know rules 13 and 14 are likely involved, we’ll print out all Elm rules for this
timestep to see their results.
RPL Debugging and Rule Diagnostics: July 2022 3–3
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Click OK

 In the Timesteps context filter, select the second From: option and enter August 5, 2018.

 Select the second To: option and enter August 5, 2028 again. You only want to look at one
timestep.

When you are finished, the Rulebased Simulation Diagnostic Configuration dialog box should
appear similar to the following figure.
3–4 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Select OK in the Diagnostic Configuration.

 Select Close in the Diagnostics Manager.

 Rerun your model.

 From the Run Control, select View, then Diagnostics Output.
RPL Debugging and Rule Diagnostics: July 2022 3–5
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Messages are posted for each rule execution, starting with rule 15:

• Rule 15 sets Elm.Regulated Spill to 400cms.

• Rule 14 sets Elm.Outflow to 1,541cms.

• Rule 13’s message says:
Elm Outflow Min: Evaluation of the right-hand side of the Assignment

statement terminated early for the following reason: Encountered
invalid value in the series slot "Elm.Outflow Min" at the date
24:00 August 5, 2018. This occurred at the following location
within the expression: "res" . "Outflow Min" [].

The key here is that the rule terminated early and it says the slot value that was invalid. In this
case it is: Elm.Outflow Min on Aug 5, 2018. We’ll follow up on this below.

• Rule 12 says it did not yield a result because the IF was FALSE and there was no ELSE.

• Rule 11 says it did not yield a result because the IF was FALSE and there was no ELSE.

You can see how useful these messages are. They say the exact result of the rule and if it didn’t
succeed, it gives the slots or logic indicating the reason it didn’t succeed.

Let’s continue the debugging exercise and fix the error.

 Open the Elm object

 Find the Outflow Min series slot and open it.

As the diagnostic output printed, there is no value for August 5, 2018. Maybe the user missed
entering this value, or it was not imported from the database by a DMI.

 Type 2000 in the cell for Aug 5, 2018.
3–6 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Run the model

 Verify in the plot and the diagnostics that now the Elm.Outflow is set to 2,000 cms on 8/5/2018.

3.4 Other Useful Diagnostic Categories

When debugging rules and RPL, the rule execution diagnostics are often the most useful, but
other useful diagnostic categories include:

• Dispatch Management → Controller

• Dispatch Management → Object

These two are useful if you want to know if and when an object solves after rules have set
values.

Note: Two other diagnostic categories, Function Execution and Print Statements,
were useful before the RPL Debugger was developed. These two can be used to
get detailed information when using functions and print statements. Now the
RPL Debugger is preferred for debugging.

3.5 Summary

In this tutorial, you saw how to use diagnostics to debug a rulebased simulation. In particular,
Rule Execution diagnostics show the result of the specified rules including the values set if
successful, missing or invalid values when terminating early, and the reason for a rule
finishing ineffectively.

Together with the RPL Debugger, diagnostics provide the tools necessary to debug complex
logic.
RPL Debugging and Rule Diagnostics: July 2022 3–7
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

3–8 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

4 Advanced RPL Debugging

4.1 Introduction and Preparation

This tutorial presents techniques for debugging more complex rules. In this tutorial you will
learn the following:

• How units are represented in the RPL debugger and how to change the display units.

• How to debug a rule with multiple statements.

• How to view LIST expressions in the RPL debugger.

• How to debug a function that calls a FOR expression.

The tutorial is part of the RPL Debugger and Diagnostics online tutorial. See the presentation
player for introductory and background information.

 Open the Arbor Basin model provided:

 ~\RiverWareTutorial\Models\ArborBasin_RPL_AdvancedDebug.mdl.gz

The RBS ruleset is saved in the model.

 Run the model.

It completes successfully.

4.2 Units in the RPL Debugger

In this section, we’ll show you how to change the display of units in the RPL debugger. This is
useful if you need more precision or want to see the values in some other display units. Let’s
run to a particular point and look at an expression.

 On the Run Control, select the Pause Before Timestep option and make sure it says
November 28, 2018.

 Run the model by selecting Start.

 Once paused before November 28, enable the RPL debugger (View and then Show RPL
debugging button, click the button to enable).
RPL Debugging and Rule Diagnostics: July 2022 4–1
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 On the Run Control, Step into November 28.

The debugger pauses at a break point already configured at the end of Rule 24.

If you click on most expressions, it will say there is no value; the reservoir hasn’t solved so the
rule will terminate early.

 In the debugger, select the Continue button.

It pauses again in rule 24. Now the reservoir has solved and this rule has re-executed. Values
are now shown.

 Select the “greater than” expression:

The value evaluated to TRUE.

 Select each of the expressions on either side of the “greater than”.

Both expressions evaluated to 232.0 “m”, yet the entire comparison says that the left operand
it greater than the right operand.

Perhaps we need to see more precision on these values because the current Pool Elevation
could be just slightly above 232.0m?

The RPL Debugger uses the Unit type settings defined in the active Unit Scheme. Currently in
this model, all flows are shown in cms, elevations are m, etc.
4–2 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 On the workspace, select Units and then Unit Scheme Manager.

 Select the Length row.

 Change the Precision from 1 to 3.

 In Rule 24, reselect the expression and notice that it is now 232.037m:

 Verify that the Diversion Min Elevation is 232.000m.

The “greater than” is correct, Cedar Pool Elevation[@t] is larger.

This shows how you can change the display units while debugging RPL expressions.
Remember that these settings include, Scale, Units, Format and Precision. You can change the
Unit type settings or even activate a new unit scheme to see values with different display units.

The following are some additional items to consider regarding units in the RPL Debugger:

• The RPL Debugger always uses the Unit type setting, for example, settings for FLOW or
VOLUME.

• Even if there are slot exceptions and you select that slot as the expression, the Unit type
rule is used.

• For monthly and annual values, the timestep is not known within the debugger. Monthly
values assume there are 31days in the month. Annual values assume 365 days in the year. It
can be a little confusing if you have a monthly model and are showing flows in a per month
unit, like acre-feet/month. The value shown may not look like the value that will be set on a
slot if that timestep has 28, 29, or 30 days in the month.

 In the debugger, select Continue twice to get out of the debugger.

To prepare for the next section perform the following:

 Delete all breakpoints - in the RPL Debugger select Breakpoints then Delete All
Breakpoints.

 On the Run Control, disable the Pause Before Timestep.
RPL Debugging and Rule Diagnostics: July 2022 4–3
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Select Continue to complete the run.

4.3 Debugging a Rule with Multiple Statements

We will investigate two initialization rules. Remember, initialization rules are stored in a sepa-
rate set that is stored in the model file.

 Open the Initialization set from the Policy and then Initialization Rules Set menu.

 Open rule 4, Average RAW Gage Flows for Three Gages:

This rule loops over three gages and then for each timestep in the run, sets the Gage Inflow to
the average of the RAW slot over the specified number of timesteps.

 If not already enabled, Enable RPL Debugging as you learned in “1 Debugging a Rule”

 Set a breakpoint at the end of the rule.

 On the Run Control, select Init to step into the initialization ruleset.

Tip: The initialization rules are executed once at the very beginning of the
run. As a result, when debugging or using diagnostics, you only need to Init
to step through initialization and then you can stop the run.

The debugger is shown and paused at the breakpoint you just set.
4–4 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 In the rule, within the AverageSlotOverTimesteps function arguments, select gage, and notice
it says “Gage Above Hickory”.

 Select date, and notice it shows “24:00 December 31, 2018”, the finish timestep.

The rule has completely evaluated. When paused at this breakpoint, the values shown are from
the last evaluation. With this breakpoint, you can’t see the values for other timesteps in the list
or other gages.

How would you debug an issue on January 4, 2018 on Balsam River? To do this, we can set a
breakpoint before any Statement or after the last Statement. Let’s set that up.

 First, let’s get out of this run. In the debugger, click the Stop button.

The diagnostics will say there was an “Error encountered,...” That just means the run was
stopped.

 Disable or delete your breakpoint at the end of the rule.

Using Breakpoints Within For Statements

 Set a breakpoint on the FOR (DATETIME date... line as shown:

 In the Run Control, select Init to start the run.

It will pause at your breakpoint.

Although we can’t see it right now, the “gage” is “Arbor River Above Aspen”.

 In the RPL Debugger, select the Continue button.

Now the gage should be Balsam River.

 In the RPL Debugger, select Step twice to get to the assignment statement.

 Verify the gage is Balsam River.
RPL Debugging and Rule Diagnostics: July 2022 4–5
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Question: If you click the “date” on the left side of the assignment what do you
think it will say in the debugger?

Answer: You might think it is the Start Timestep, Jan 1, 2018, but since we are
paused before that expression, it hasn’t evaluated yet for this time
through the loop. Instead, it will say the last evaluation, 24:00
December 31, 2018, the finish timestep, from the loop for the first
gage.

 In the RPL Debugger, select Step.

It evaluates the assignment statement and the date now shows 24:00 January 1, 2018 and
shows the values computed for that date for Balsam.

In this way, it is important to remember that the values shown are from the last evaluation.
When first learning how to debug, this may not be intuitive. As you practice using the
debugger, this will become second nature.

 In the RPL Debugger, select Step four or five times until the “date” expression shows January
4, 2018.

Now we can see that the AverageSlotOverTimesteps evaluates to 50.63cms and averages the
Inflow RAW slot from Dec 28, 2017 to January 4, 2018. We did this by selecting each expres-
sion, for example:

We could also open the AverageSlotOverTimesteps and investigate it further.

Viewing items in a list

Before we get out of this run, let’s look at the debugger and how it displays lists.

 Select the TO operator between the Start Timestep and Finish Timestep.
4–6 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Notice the tool tip shows a long list of dates that can be hard to read.

 Look in the debugger and notice that this same list is presented in a nice collapsible list:

 Collapse the list and see it in a one-line view. Also, experiment with the buttons to the right to
see the list in a flat view and use the magnifying glass button to pop out the view to a separate
dialog. This can be particularly useful for very large lists.

 From the debugger, select the Stop button to end/abort the run. The error message is okay.

 Delete all of your breakpoints from the debugger (Breakpoints then Delete All Breakpoints).

Using Temporary Logic for Debugging

In the above sections, we set a breakpoint in a statement and then used the debugger to step to
the desired iteration in the loop. This worked fine for the sample problem with three gages
when we were interested in the 4th timestep, but what if there were 100 gages you and needed
to look at the 2,000th timestep. This would be very time consuming to step through.

Instead, consider using some temporary RPL logic to set up a place where you can place the
desired breakpoint. For our sample problem of debugging Balsam Gage on January 4, 2018,
we can write a new IF statement and add in a breakpoint before the assignment statement.
RPL Debugging and Rule Diagnostics: July 2022 4–7
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

Note, both assignments--for the IF and ELSE clause--are the same so that the actual results do
not change. The only change is to add in a place to put the debugging breakpoint.

For the screenshot above, you would then step into the initialization rule and it would pause at
this breakpoint. Then Step to advance through the statement. Now you can see the exact values
that were computed for that object at that timestep.

If time allows, implement the above logic and see how it works.

 In the debugger and/or the Run Control, select Stop to end the run.

 Delete all of your breakpoints from the debugger.

4.4 Debugging a FOR Expression

In the previous exercise, we put breakpoints within a FOR statement. Similar techniques can
be used for IF and WITH statements. Remember that statements are only at the rule level. The
other looping mechanisms in RPL are FOR, WITH, and WHILE expressions. What if you
need to debug inside of a FOR expression? This section will provide techniques for looking at
the results and debugging within FOR expressions.

 In the initialization rules set, open rule 3, Smooth RAW Gage Flows for Cherry.

This rule is similar to rule 4, but uses a different smoothing technique involving coefficients to
adjust Cherry’s RAW data into the desired inflows.
4–8 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Double-click the SmoothUsingCoeffs function to open it:

This function builds a list of dates and flows and then loops over the number of coefficients,
multiplying the coefficient by the flow value at a particular date and adding it to the result.

 With the debugger enabled (but not within a run), try to set a breakpoint within the FOR
expression in the middle of the function. Notice, it only adds the breakpoint at the beginning of
the function. Alternatively, you can put a breakpoint at the end of the function.
RPL Debugging and Rule Diagnostics: July 2022 4–9
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

This is an important item to remember in the debugger. Breakpoints and pausing can
only occur before or after functions and statements. The debugger will not break or
pause within a function body.

 On the run control, select Init to step into the initialization set and pause at the beginning of
the SmoothUsingCoeffs function.

There are no values in the debugger yet as the expression has not evaluated.

 Set a breakpoint at the end of the function if you do not already have one.

 In the debugger, Step to the end of the function.

Now you can explore the results of the function.

It was called on January 1, 2018 and returned 20.18cms as shown below.

Explore other results and see how this function behaves.

 Continue twice and look at the next call to the function. You could keep doing this for all the
dates it is called from the Initialization Rule 3.

Now, let’s focus on the main goal for this section, to verify the FOR expression calculation
inside the function.

 From the debugger, select the Stop button to end/abort the run. The error message is okay.

 Delete the breakpoint at the end of the SmoothUsingCoeffs function.

To debug inside of a FOR expression, we need to call a function in which we can put a break-
point. Since we don’t have one in the SmoothUsingCoeffs function, we will need to put in a
dummy or temporary debugging function. Let’s edit our function.

 First, select the “+” expression:

 Copy the expression using Ctrl+C.

 Open the RPL Palette using Alt+P or the Function and then Palette menu.

 Switch to the User-Defined Functions tab.
4–10 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 Double-click the DebugFunctionNUMERIC function.

 Select the <numeric expr> and paste using Ctrl+V. It should now look like this

 Open the DebugFunctionNUMERIC and verify it returns the numeric passed into it.

Now we can debug the SmoothUsingCoeffs function.

 On the Run Control, select Init to start the run.

It will pause in the SmoothUsingCoeffs for January 1.

 Select Continue in the debugger three more times to step to January 4. (You can verify this
date by clicking on date in rule 3).

 Add a breakpoint to the DebugFunctionNUMERIC after the body:

 In the debugger, select Continue and it should go to that breakpoint in
DebugFunctionNUMERIC.

Now we are paused in the first loop of the FOR expression.

 Go to the SmoothUsingCoeffs function and verify that counter is 0.0. (Indices are zero-based
for table lookups)

 Explore the values for the three components that make up the result: result (0.0cms),
coeffTable[0,0] = 0.5, and the flow value (21.04cms).

 When satisfied, in the debugger, select continue and repeat the investigation for iteration
counter 1, 2, and 3. There are four rows in the table: 0, 1, 2, and 3.

In this way, we can use a function to debug inside of a FOR expression. In our case, we didn’t
have one in there already, so we added a temporary debugging function. This same process can
be used for WITH and WHILE expressions.

 From the debugger, select the Stop button to end/abort the run. The error message is okay.
RPL Debugging and Rule Diagnostics: July 2022 4–11
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

 If you want, in the SmoothUsingCoeffs, undo the changes to remove the debugging function. It
is okay to leave it if you want, but it does clutter up the logic.

4.5 Summary

This tutorial presented techniques for debugging more complex rules. In this tutorial you
performed the following:

• Learned how to debug a rule with multiple statements, especially FOR statements.

• Learned how to debug a function that calls a FOR expression.

In the process, you also learned how to look at items in a LIST in the RPL debugger, learned
how to use a debug function and other debug logic, and gained additional experience using the
RPL debugger. Hopefully this provides a solid foundation of techniques that you can use to
debug your RPL logic.
4–12 RPL Debugging and Rule Diagnostics: July 2022
Copyright 2022, The Regents of the University of Colorado. No distribution or reproduction.

	RPL Debugging and Rule Diagnostics
	1 Debugging a Rule
	1.1 Introduction and Preparation
	1.2 Using the RPL Debugger
	1.3 Summary

	2 Debugging a RPL Error
	2.1 Introduction and Preparation
	2.2 Enable the Debugger and Run
	2.3 Summary

	3 Using Diagnostics for Rule Debugging
	3.1 Introduction and Preparation
	3.2 Analyzing Results
	3.3 Using Diagnostics to Debug Rule Execution
	3.4 Other Useful Diagnostic Categories
	3.5 Summary

	4 Advanced RPL Debugging
	4.1 Introduction and Preparation
	4.2 Units in the RPL Debugger
	4.3 Debugging a Rule with Multiple Statements
	Using Breakpoints Within For Statements
	Viewing items in a list
	Using Temporary Logic for Debugging

	4.4 Debugging a FOR Expression
	4.5 Summary

