

We bet on risk-informed decision making and lost. Now, it's time to double down.

Presented by Jordan S Lanini, M.S., P.E. Technical Service Center Mitch Clement and Tim Magee, CADSWES Tim Miller, Eastern Colorado Area Office Andy Wood, NCAR

Risk-informed decision-making

- Goals: improve operations flexibility and outcomes through risk-informed operations decisions over deterministic ones
- Evaluate outcomes across the range of potential future inflows
- Trade-off analysis between reservoir uses to suggest release decision

Forecasting: quantify uncertainty

Evaluate hindcast ensembles for skill relevant to operations.

Operations: quantify risk

Develop and calibrate/validate reservoir operations model representing basin policy Develop metrics of interest to basin stakeholders

Decision-making: minimize consequences

Develop methods to analyze trade-offs and operations thresholds Suggest an operational decision based on trade-off analysis

Version 1.0: Buffalo Bill Dam

- Reservoir uses:
 - Irrigation: ~93,000 ac
 - Municipal Use: 6 municipalities, incl. Cody
 - Power Generation:
 - Shoshone Powerplant, 3 MW
 - Buffalo Bill Powerplant, 18 MW
 - Spirit Mountain Powerplant, 4.5 MW
 - Heart Mountain Powerplant, 6 MW
 - Fish and Wildlife
 - Recreation
 - Incidental Flood Control (No allocated storage)

Recommending a Decision: Two-stage stochastic programming with recourse

Step 1 – Determine Week 1 Release options

- Method developed by CADSWES, University of Colorado Boulder
- Recommends a decision for a shorter (stage 1) period based on results from stage 1 and longer second stage

Risk-informed Operations

Step 2 – Apply Week 1 Release options

- For each Week 1 Release simulate forecast ensemble
- Week 1 use specified release; rest of year standard rules

1999 Forecast Evolution: Preceding a drought

July 5, 1999 Ensemble Forecast

Experiment Results

Conclusions and Recommendations

- Risk-informed decision-making approach
 - Approach provides a robust framework for evaluating release decisions
 - Ensemble spread errors (reliability) limited our ability to explore its value
 - Would ensemble post-processing/combine forecast sources improve performance?

Version 2.0: Ruedi Reservoir Operations Pilot Study

- Collaborators: CADSWES, MBART,ECAO, UpstreamTech
- Use UpstreamTech and disaggregated PyForecast seasonal forecasts
- Simplify trade-offs
- Short-term (~10 days) experiment focusing on flood control/filling reservoir using UpstreamTech forecasts

Risk-Informed Operations: Version 2.0

Phase I: Develop Seasonal Fill Plan

- Weekly timestep, seasonal forecast (Today through end of fill season)
- Calculate flood control and water supply guide curves based on risk tolerances
- Hydropower guide curve based on turbine capacity

Phase II: Make short-term release decision for seasonal plan

- Trade-off between water supply and flood risk
- Maximize hydropower

Phase III: Short-term flood control operations (aka, FIRO)

- Daily (or subdaily timestep), 10-day forecast
- Check the current short-term release and the 10-day forecast against flood control and water supply curves
- Change short-term release if necessary

Phase I: Guide Curve Development

Phase III: Short-term release decisions

Conclusions

- Buffalo Bill effort was limited by forecast reliability/lack of post-processing
- Lessons learned regarding forecasts and trade-offs
- Next steps:
 - Complete Ruedi model
 - Implement updated approach
 - Stakeholder engagement
 - Execute experiments

Ruedi Dam and Reservoir.

