

Using RiverSMART and Cloud Computing to Support Long-Term Policy Exploration in the Colorado River Basin

RiverWare User Group Meeting August 29, 2023

What sort of future conditions should drive the design of Colorado River Post-2026 Operations?

- Uncertainty about future water supply within the Colorado River Basin
 - Long-term average flow?
 - Drought persistence? Periods of high flows?
- Uncertainty about demand growth in the Upper Basin and shortage magnitudes in the Lower Basin
 - Overall demand levels + rates of growth
- Currently in the middle of unprecedented drought and declining reservoir storage what will conditions be when new agreements are made?
 - Does this impact policy evaluation?
- How do we incorporate many potential futures into a decision-making framework that includes more stakeholder involvement?

• Multi-objective measures compare policy tradeoffs using one value per performance objective

• Multi-objective measures compare policy tradeoffs using one value per performance objective

• Multi-objective measures compare policy tradeoffs using one value per performance objective

- Multi-objective measures compare policy tradeoffs using one value per performance objective
 - single values do not summarize performance across large ensembles

- Multi-objective measures compare policy tradeoffs using one value per performance objective
 - single values do not summarize performance across large ensembles
- Tradeoffs are only valid across a specific set of assumptions – what if those assumptions change?

Tension between exploring policy tradeoffs and performance in different futures

- Single-objective measures can be evaluated across many futures – how often do we *fall below a threshold* measure?
 - Same policy for many different demands

Tension between exploring policy tradeoffs and performance in different futures

- Single-objective measures can be evaluated across many futures – how often do we *fall below a threshold* measure?
 - Same policy for many different demands
 - Same policy for many different hydrology traces

Instead of looking for the 'best' policy – we find vulnerable conditions in every policy

- Does not require projection of 'most likely' future conditions
- Instead focused on finding undesirable outcomes across all potential conditions
 - How do we simulate all potential conditions? (we don't)
 - Identify important characteristics & sample using different methods
- How should we categorize future conditions – for sampling & visualization
 - Input from other models (CRMMS)
 - Scenarios/ensembles
 - Statistical/pattern grouping methods

5 Years (MAF) 20 Ferry Natural Flow First 15 Lee 10 Average

Balance between considering many policies + evaluating many futures

- Policy choices:
 - Ex: Are reservoir-based triggers (e.g., LB shortage) continuous or tiered? Elevation- or volumebased?
 - Ex: evaluate 200 different policies
- Scenarios:
 - ~400 hydrology traces (30 years, 2027 2056)
 - ~7 Upper Basin demand scenarios (steady and growing scenarios)
 - ~3 Initial conditions (imported from CRMMS)
- ~200 policies * 400 traces * 7 demands * 3 ICs = 1.68 million RiverWare evaluations
- 1,750 days of computing time = not helpful for a process that finishes in 2026
- 4 Microsoft Azure VMs w/ 100 processing cores = 4.3 days

Faster computation enables iterative model development

- Multiple rounds of optimization/scenario exploration provided feedback for the creation of policy levers, demand, hydrology, and IC scenarios as well as metric and objective slots
 - Scenario exploration and model operational concepts were developed together
- Web tool enables iterative policy design by stakeholders
 - Interactive web interface makes it simple to design new policies
 - Stakeholder input can be translated to RiverWare policies and run on the cloud
 - Full sensitivity results returned within 4.5 hours computational resources that are not readily available to most of stakeholders
 - Policies generated through optimization are available for benchmarking/comparison

Questions?

HB Zeff hzeff@usbr.gov

