

2023 RiverWare User Group Meeting

August 29th, 2023

Caleb Erkman, P.E. US District Court Water Master's Office

OUTLINE

TROA Overview

- Lessons Learned
 - 1. Multi-Purpose Model
 - 2. Fight for Consistency
 - 3. Be willing to change
 - 4. One SCT to Rule them all

Lake Tahoe March 2015, photo credit Caleb Erkman

Upper Truckee River Basin

TROA OVERVIEW

- Truckee River Operating Agreement (TROA)
 - Innovative agreement for collaborative operations of the Truckee River Reservoirs
 - Negotiated for nearly 30 years
 - Signed in 2008
 - Implemented December 1, 2015!
- Goals:
 - Improve operational flexibility
 - Improve efficiency of Truckee River Reservoirs
 - Improve instream flows
 - Satisfies water rights in conformance with existing decrees
- Several parties in the system have the ability to:
 - Establish credit water storage
 - Exchange credit water
 - Trade credit water
 - Release water for beneficial use

MULTI-PURPOSE MODEL

- Backward looking accounting
- TROA Administration
- Scheduling
- Operational Forecasts
 - Short-Term
 - Seasonal
- Seasonal Risk Assessment
- Long term planning (in development)

All done with the same RiverWare model!

MODEL PURPOSES VIN DIAGRAM

FIGHT FOR CONSISTENCY

1st Rule of good programing:

• Don't repeat yourself

2nd Rule of good programing:

• Don't repeat yourself

FIGHT FOR CONSISTENCY

- All the model purposes use the same workspace, ruleset, functions, objects, etc as much as possible
- Sometimes the same calculation needs to happen in multiple rules or multiple places within the same rule
 - Use a Function!
- Every year is different
 - The temptation is to customize logic for one condition that breaks, which then breaks another
 - Regression testing!

BE WILLING TO CHANGE

- Any model approximates the real system, and always will.
- Know your approximations!
- Some key approximations in the TROA Model:
 - TROA
 - Not every nuance of every condition is modeled, and some may not be modeled completely.
 - Some conditions were omitted because they are unlikely to occur
 - The physical Truckee Basin
 - The numerical characterization of the reservoirs, reaches, etc. differs from the real-world in many ways known and unknown
 - Realtime stream gage record (e.g., daily average vs instantaneous)
- When one of these approximations becomes an issue, Change

BE WILLING TO CHANGE: EXAMPLE

- TROA Policy Approximation
 - The TROA Model was initially configured with releases using outflow supplies
 - To do an exchange, the original outflow supply was changed, then a transfer was set to a like amount
- Difficulties
 - This required a transfer supply from each account that might make a release to each account that might be used for an exchange
 - If you want to layer exchanges, then you also need a supply from each destination account
 - The original value of the source supply is not preserved
 - Supplies are set by multiple rules, making it difficult to debug/decipher results
- In 2018 layering exchanges became necessary, not wanting to let the model be the limiting factor, we needed to find another solution.

BE WILLING TO CHANGE: EXAMPLE

Solution¹:

- Create a PassThrough account on the reservoir for each demand
- Change all release supplies to transfer supplies to that account
- Exchange releases are also transfer supplies to or from that account

Cost

- Releases are made with transfer supplies which is less intuitive
- Advantages
 - Original release supplies maintained
 - Can layer as many exchanges as necessary
 - No additional supplies to layer exchanges!
 - Significant reduction in number of supplies

BE WILLING TO CHANGE: EXAMPLE

- TROA RiverWare Accounting Workspace before and after
 - Note this was done in two stages over 6 months
 - Prosser is one of the simpler reservoirs
- Changes
 - New Accounts on Prosser
 - FRPassThru
 - FishPassThru
 - Transfer supplies routed through new accounts
 - Fewer transfer supplies (less dense cloud)
 - Fewer inflow supplies to FR and FishW on BlwProsser
 - Total Supplies in Model:
 - Before: 2406
 - After: 1922
 - Change: -484, 20%!

ONE SCT TO RULE THEM ALL

- For an operations model there is an exception to every rule
- Building in a systematic way to override the strict rules is key to success
- Delicate balance between optional inputs and required inputs.
- Reduce required inputs as much as possible
- Organization is critical

ONE SCT TO RULE THEM ALL

- The TROA SCT Library has been configured to organize most of the common Scheduling Inputs to the TROA model
- The SCT summarizes various kinds of slots on different Tabs
- The tabs used in the "TROA_SCT_Library" are:
 - Series Slots
 - 26-summary tabs
 - 1944 slots included, including duplicates
 - Other Slots
 - Periodic "Source Priority Tables" slots
 - 138 total
 - Object Grid
 - List of Data Objects that have common inputs
 - 20 objects
- Note: All of the inputs summarized on the TROA_SCT_Library can also be edited directly from the RiverWare interface

C SCT TROA_SCT_Library.sct (TROA_WY2023_Ops_Accounting_OFFICIAL.mdl.gz)					- 0	\times
File Edit Slots Aggregation View Config	DMI Run	Scrip	ts Diagnostic	s Go To		R 🖣
9 🔽 77 🔳 🖻 🔟 🗠 🎖 🛠 🕨 🕖 🛄 🛶 🗄	I 📑 o 🗉		MDR		Alt	Units »
Series Slots Edit Series Slot List Scalar Slots Other Slots Object Grid						
Slot Label	Units		8/19/23 Sat	8/20/23 Sun	8/21/23 Mon	8/22, Tue
Reservoir Limits Flood Control Parameters						
🕅 Snowmelt Parameter - NRCS OFFICIAL	acre-feet	79.73	9,579.73	9,579.73	9,579.73	
🛯 Snowmelt Parameter	acre-feet	0.00	0.00	0.00	0.00	
M TruckeeAtReno.Gage Outflow	cfs	29.20	430.90	419.50	422.70	
Воса						
M Storage	acre-feet	20.00	33,185.00	32,877.00	32,649.00	3
M FloodControlCapacity	acre-feet	58.00	40,868.00	40,868.00	40,868.00	4
M UserInputFloodControlCapacity	acre-feet	NaN	NaN	NaN	NaN	
M FloodControlTolerance	acre-feet	0.00	0.00	0.00	0.00	
🛚 EstablishmentHighLimit	acre-feet	00.00	32,700.00	32,700.00	32,700.00	3
Boca.Outflow	cfs	56.50	263.40	252.20	234.00	
🛚 Boca Guide Release	cfs	0.00	0.00	0.00	0.00	
🛯 Boca Guide Override	cfs	NaN	NaN	NaN	NaN	
M FR	cfs	NaN	NaN	NaN	NaN	
M FR_Storage	cfs	NaN	NaN	NaN	NaN	
M FishW	cfs	NaN	NaN	NaN	NaN	
M ComputeMaxReleaseShift	NONE	NaN	NaN	NaN	NaN	
MaxReleaseShift	ft	NaN	NaN	NaN	NaN	
MaxRelease	cfs	NaN	NaN	NaN	NaN	
M TreatReleaseAsMaxRelease	NONE	NaN	NaN	NaN	NaN	
4	•				-	
Acct Inputs Tolerances Reservoir Inputs	s Proces	s Limit	s Reservoir	Limits Loca	I Inflows Di	versib 🕨
159 Slots						
[multiple unit types]						

QUESTIONS?

- A special thank you to the following people whose tireless efforts made the modeling TROA possible!
 - Jeff Boyer
 - Shane Coors
 - Tony Powell
 - Pat Fritchel
 - Tom Scott
 - Jeff Rieker
 - TROA Stakeholders
 - USBR, TMWA, PLPT, CA DWR, Reno, Sparks, Washoe County, State of Nevada

Lake Tahoe Dam winter 2017, photo credit Paul Larson

