
Challenges Regarding Hourly Routing for Operations Models

Steve Setzer Hydros Consulting Inc. February 2, 2018



Bureau of Reclamation, Yuma Area Office – Water Operations Staff

Background

- Hydros developed an hourly-timestep model of the Colorado River from Parker Dam to Imperial Dam (including Senator Wash and Brock Reservoirs) for Reclamation's Yuma Area Office
- Model Objective:
 - Estimate the flow arriving at Imperial Dam given water already in the river at/below Parker Dam and future orders from Parker Dam

- Time horizon

- Compute the forecasted excess/shortage at Imperial Dam
- Recommend operations of Brock Reservoir and Senator Wash Reservoir to mitigate excess/shortage

Background

All values are approximate to give you a sense of the magnitudes

- ~143 miles from Parker Dam to Imperial Dam (~ 3 days)
- ~5.3 million acre-feet per year at Imperial Dam (6,000 12,000 cfs daily)
- No storage at Imperial Dam (~ few hundred acre-ft)
- Off channel storage at Brock Reservoir and Senator Wash
- Orders at Imperial Dam can change at any time (not taking ordered water)

- Best Case Scenario (both Brock and SW available):
 - ~1,800 2,400 cfs inlet/outlet capacity to/from storage
 - ~15,000 acre-ft storage

- "Not-Quite-Worst-Case" Scenario (Brock down, limited SW units)
 - ~6,700 acre-ft storage
 - 300 600 cfs inlet/outlet capacity to/from storage (3 units)

Model Accuracy

- In the not-quite-worst-case scenario there is little room for model error
 - 300 cfs based on numbers above (operators would like 200 cfs accuracy - daily mean)
 - Flow arriving at Imperial Dam 6,000 cfs to 12,000 cfs most of the year: 2.5% 5%
- 2.5% 5% Routing accuracy: Is this possible?
- Excellent = within 5% of the true value 95% of the time
- Good = within 10% of the true value 95% of the time
- Fair = within 15% of the true value 95% of the time
- Poor = less than fair

The good news...

- Lower Colorado River interesting case study for routing
- Does not rain (3 inches/year)
- Stable with respect to gain/loss
 - Monthly % gain/loss in the model I won't discuss this
- Diversions and return flows are all gaged
- 10 main-stem gages between Parker Dam and Imperial Dam
- Dedicated team of hydrologists with state of the art flow metering

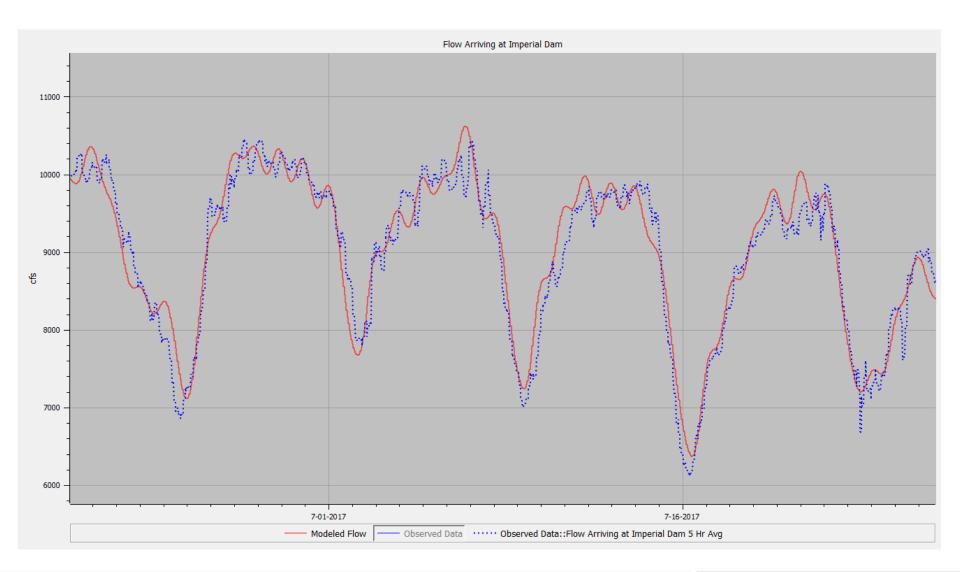
RiverWare Routing Methods

C	Object Viewer	r			
File	Edit View	Slot Account	Group		
CR a	t Martinez Lak	e to Imperial Dam	Routing 🔀		
5	Object: CR a	at Martinez Lake 1	o Imperial Dam	n Routing	
Slot	s Methods	Accounts	Accounting N	Methods	Attribu
Selec	cted Method:	Kinematic Improv	ved	-	
Category		No Routing Time Lag		^	
>	Local Inflow a Depth to Flow Diversion from Stage Gain Loss Reach Bank S Outflow Adju: Alternative R	Variable Time La Impulse Response Step Response Variable Step Re Muskingum Muskingum with Kinematic Kinematic Improv Muskingum Cung Muskingum Cung Muskingum Cung MacCormack Storage Routing Variable Storage	se sponse Segments ved e e Improved	roved v, Sol Recta	ve Inflow angle
		Modified Puls	roodung	¥	

Kinematic Improved Routing

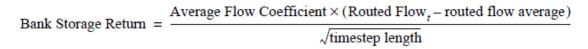

Need reach length, width, slope, and Manning's n

- Need for different sets of parameters for different flow regimes
 - E.g. High flow, mid flows, low flows

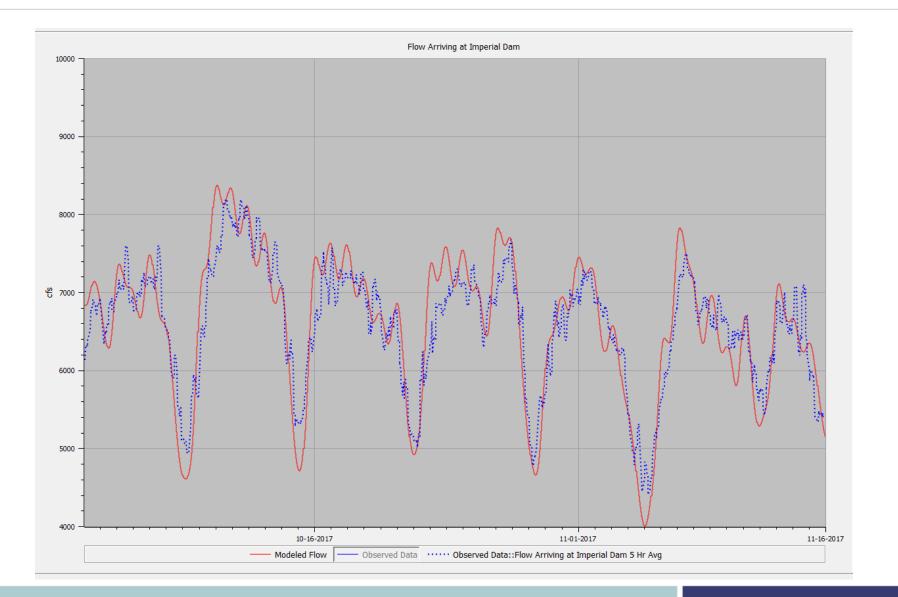

RiverWare Routing Methods

RiverWare Routing Methods

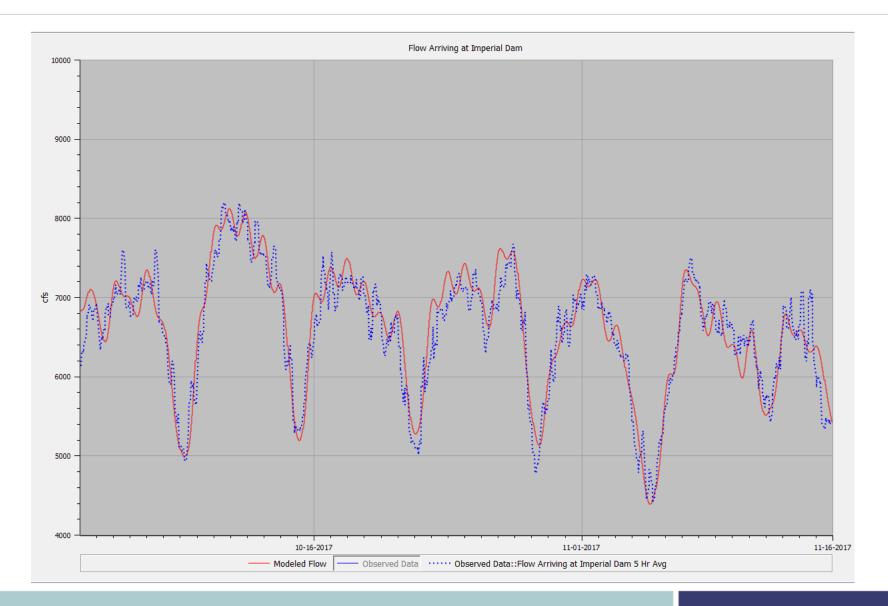
- Pick a good routing method
- Need multiple sets of routing parameters determined by calibration


Next... backwaters/bank storage

Backwater Areas



The routed flow average is the average flow over the number of timesteps specified in **Timesteps to Average** prior to the current timestep. For the first (timesteps to average - 1) timesteps, some routed flows are being set on timesteps prior to the initial timestep. These values, set equal to the routed flow at the initial timestep, are used so that calculations for routed flow average don't used routed flows equal to zero. A warning message will remind users this is occurring.


Bank Storage

Bank Storage

Thus far...

- Pick a good routing method
- Need multiple sets of routing parameters determined by calibration
- Use bank storage method for additional attenuation during large swings in flow

Next... gage bias correction

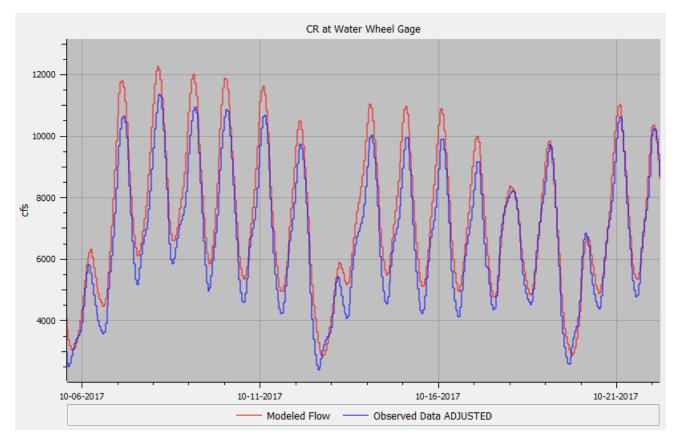
Main Stem Gages

mage Landsat / Copernicus © 2018 Google © 2018 INEGI

Cibola Gage

Picacho Park Gage Martinez Lake

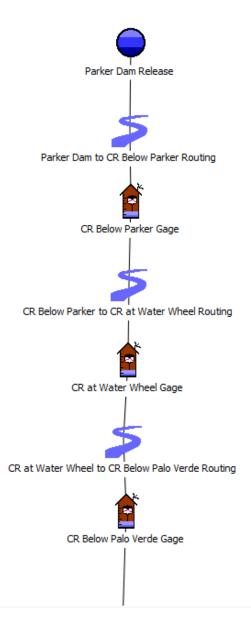
Impertal Dam

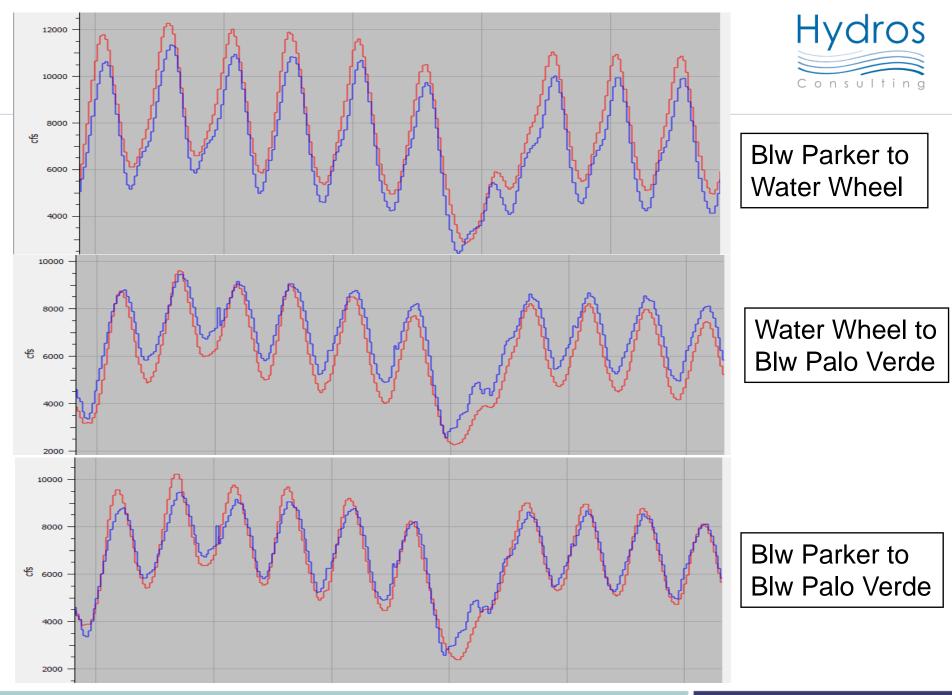

ich	u/s point	d/s point	Actual Distance (miles)
1	Parker Dam	Gage below Parker	17.0
2	Gage below Parker	Waterwheel	24.1
3	Waterwheel	Below Palo Verde	20.0
4	Below Palo Verde	Below Interstate Bridge	11.9
5	Below Interstate Bridge	Below McIntyre Park	7.0
6	Below McIntyre Park	Taylor Ferry	6.6
7	Taylor Ferry	Below Oxbow Bridge	8.2
8	Below Oxbow Bridge	Cibola Gage	11.2
9	Cibola Gage	Picacho Park	19.2
10	Picacho Park	Imperial Dam	17.6
	Parker Dam to Imperial Dam	142.8	
	Parker Dam to Imperial Dam	142.	

Gage Accuracy

- How do you know if a gage is accurate?
- How do you know which gage is accurate?

Example


Three Gages


Below Parker

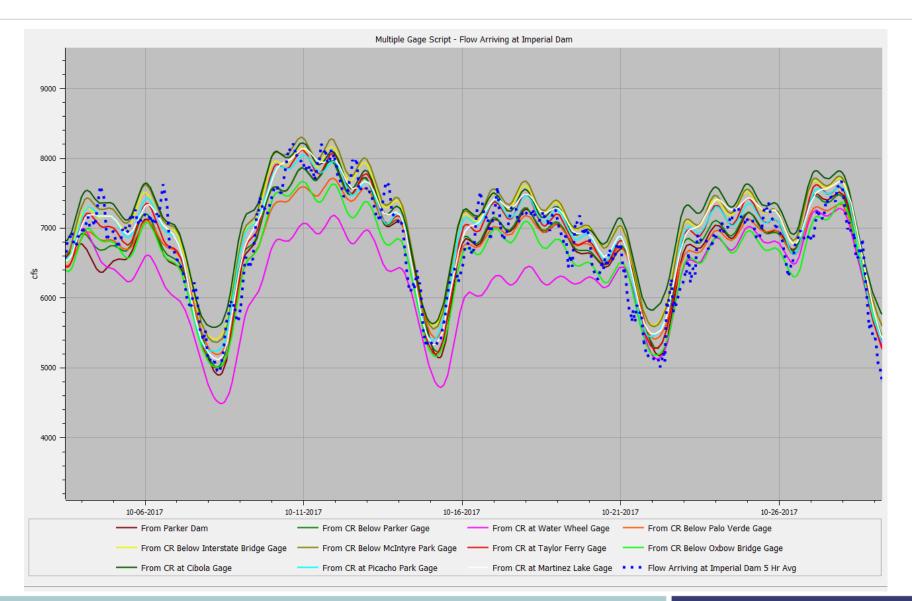
Water Wheel

Below Palo Verde

Gage Bias Correction

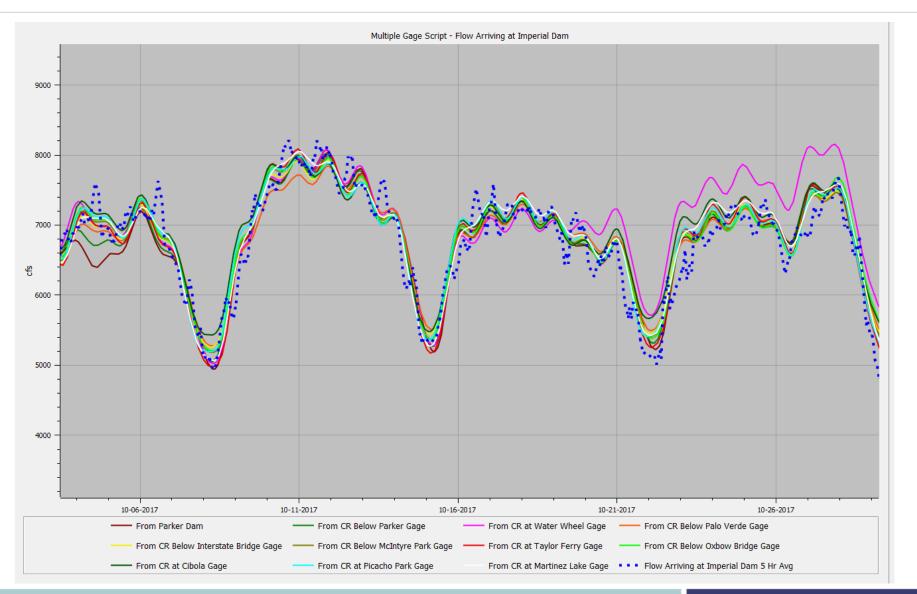
- We still don't know which gages are correct, but probably Water Wheel gage is reading low
- Either that or there is a loss between the upper two gages followed by a gain between the lower two gages of the same amount
- Or, maybe the other two gages are off by the same amount and Water Wheel is correct
- We need to hang our hat on something...
- Flow at Imperial Dam

Gage Bias Correction


- We created a script to route from each gage individually (i.e. not using any other main stem gages) down to Imperial Dam
- Compute the Mean Error and Mean Error as percent

Configuration 🛛			V	Gage Adjustment Value	s
Object: Configuration				Value: -2.5	percent
Slots Methods Accounts Accounting Methods	Attributes	Description			Gage Adjustment Percent S
24:00 November 15, 2017			122	0: Parker Dam Release	0.9
Slot Name	Value Uni	its	^	1: CR Below Parker Gage	0.7
😡 Days for Mean Error Calc	7.0 NO			2: CR at Water Wheel Gage	11.5
🐱 Imperial Dam Mean Absolute Error	289 cfs			3: CR Below Palo Verde Gage	1.7
Marcial Dam Mean Absolute Error as Percent	4.6 per			4: CR Below Interstate Bridge Gage	-3.1
💭 Imperial Dam DAILY Mean Absolute Error	274 cfs			5: CR Below McIntyre Park Gage	-3.8
Imperial Dam DAILY Mean Absolute Error as Percent	4.3 per				-0.5
💭 Imperial Dam Mean Error	-214 cfs			6: CR at Taylor Ferry Gage	-0.5
🐹 Imperial Dam Mean Error as Percent	-3.4 per	rcent C		7: CR Below Oxbow Bridge Gage	4.4
			×	8: CR at Cibola Gage	-2.8
Order: Custom for this Object 🔻 👔 🔱 🗌 Filter Slots 💌				9: CR at Picacho Park Gage	-0.8
				10: CR at Martinez Lake Gage	-1.1

1


Gage Bias Correction

Gage Accuracy

Warnings

- Operators need to stay on top of gage adjustments
 - Need to know when adjustments to the rating curves take place
 - Need to re-compute weekly or even daily
- Caveat: I would never recommend this for a planning model or anything other than a very short term model
 - Normally do not want to mess with observed data

Results (13 day period)

C Object Viewer <u>F</u> ile <u>E</u> dit <u>Vi</u> ew <u>Sl</u> ot Group	- 0	×
Calibration Parameters 🔀		T
Object: Calibration Parameters		
Slots Methods Accounts Accounting Methods Attributes Description		
24:00 November 15, 2017		1~
Slot Name Value I	Units	^
Picacho Park to Martinez Lake Backwaters		
Martinez Lake to Imperial Dam Backwaters		
W Use Run Control Dates for Error Stats 0.00 N	NONE	
Start Date for Error Stats 24:00 October 6, 2017 F	FullDateTime	
End Date for Error Stats 24:00 October 19, 2017 F	FullDateTime	
💭 Imperial Dam ME -4.40 c	cfs	
Imperial Dam Daily MAE 86 o	cfs-day	
Timperial Dam MAE 198.08 of	cfs	
imperial Dam RMSE 250.16	NONE	
		~
<		>
Order: Custom for this Object 🔻 👔 🐺 🗌 Filter Slots 💌		

- In addition to routing and other physical process modeling...
- Correct for gage bias (must do this constantly!)
 - It is possible to have a model that is more accurate that uncertainty in observed data as long as you correct it
- Helps to have 10 gages along 150 miles reach, monthly checking/re-rating, in a location where it never rains