Modeling Climate Change in the Red River Basin: Results and Discussion

Presented By: Cody Hudson, P.E.

August 23rd, 2016

Background

- Funding
 - South Central
 Climate Science Center
- Project Timeline
 - Sept. 2013 to Dec. 2015
- Partners
 - Chickasaw & Choctaw
 Nations
 - University of Oklahoma

Method

Climate Scenarios

Representative Concentration Pathways (RCP)

Hatching (i.e., diagonal lines) shows regions where the projected change is less than one standard deviation of the natural internal variability

(a)

(b)

Global Climate Models

>50 GCMs from 20 research centers used in CMIP5

3 selected that represented area and model uncertainty

Model	Research Center	Resolution
CCSM4	U.S. National Center for Atmospheric Research (NCAR)	0.90° x 1.25°
MIROC5	University of Tokyo	$1.41^{\circ} \times 1.41^{\circ}$
MPI-ESM-LR	Max Planck Institute for Meteorology Earth System Model	1.80° x 1.80°

Adapted from: Sheffield, J., Barrett, A. P., Colle, B., Nelun Fernando, D., Fu, R., Geil, K. L., ... & Lombardo, K. (2013). North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology*. *Journal of Climate*, *26*(23), 9209-9245.

Downscaling Methods

- 3 Quantile Mapping Methods
 - CDFt Cumulative Density Function Transform
 - $F_{LF}(x)=F_{LH}(F^{-1}_{CH}(F_{CF}(x)))$
 - EDQM Equi-Distant Quantile Mapping
 - $F_{LF}(x) = CF + F^{-1}_{LH}(F_{CF}(x)) F^{-1}_{CH}(F_{CF}(x))$
 - BCQM Bias Correction Quantile Mapping
 - CDFt without post-processing refinements to improve the tail behavior of the projections

Data Link: http://data.cybercommons.org/dataset/red-river-project

LF= Local Future LH= Local Historical CF= Coarse Future CH=Coarse Historical

Future Rainfall (RCP 8.5)

Cannon AJ, Sobie SR, Murdock TQ (2015) Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate:150722131126009. doi:10.1175/jcli-d-14-00754.1.

- 1) Rainfall Maps generated by Xianwu Xue for this project.
- 2) Livneh, B. et al., 2013. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions*. Journal of Climate, 26(23): 9384-9392.

Lake Texoma Inflows from VIC

GEOSCIENCE & ENGINEERING BOLUTIONS

VIC Modeling

- Macro-Scale Model
- Solves grid based water balance
- Inputs
 - Precip., Temp, Wind,...
- Flow Routing
 - multi-site cascading calibration (MSCC)
 - Developed by Xianwu Xue at University of Oklahoma as part of this project
 - Calibration with daily LIVNEH data (1981-2013)

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Overview/ModelOverview.shtml

VIC Calibration

VIC Output

- Calibration results effected by reservoirs
- Areas without calibration are suspect

Lake Kemp Monthly Inflows from VIC

Red River Compact

- Splits the basin into 5 reaches
- Reaches further split into sub-basins
- Defines water ownership and sets minimum flows

Accounting in Reach I

Compact

- Oklahoma shall have free and unrestricted use of the water in Subbasin 2
- Texas shall have free and unrestricted use of the water in Subbasin 3
- Mainstem of the Red River and Lake Texoma.
 - Oklahoma shall be apportioned 200,000 ac-ft/year
 - Texas shall be apportioned 200,000 ac-ft/year.
 - Additional quantities may be apportioned in a ratio of 50% Oklahoma and 50% Texas.

Maps provided by: Wayne Kellogg, Environmental Engineer, P.E., P.G., CSP, Chickasaw Nation

Red River Compact - Reach I, Subbasin 2

Red River Compact - Reach I, Subbasin 3

Accounting in Reach I

Water Rights (TX & OK)

- Prior Appropriation
- Data Sources
 - (TCEQ) Texas Commission on Environmental Quality
 - (OWRB) Oklahoma Water
 Resources Board

Water Users

- >1,500 Water Users!!!!
- Needed to develop a way to automate
 - python script takes water user information in a database and creates objects for import in model
 - Makes Aggregate Diversion and Aggregate Reach Objects
 - Creates links, accounts, sets methods, and slots
 - Data Required
 - Monthly Water Demand
 - Reach Name
 - Water Right Priority Date

RiverWare Geospatial View

RCL and Python

- Used Python to run in Batch Mode using RCL
- Text files for every object stored in folder for each simulation
 - DMI Input
 - RCP26-CCSM4-EDQM
 - EVAP
 - PREC
 - Det. Inflow
 - Inc. Inflow

- DMI Output

- RCP26-CCSM4-EDQM
 - Outflow
 - Storage
 - Elevation
 - Diversion

honShell.py 🔀
#!/usr/bin/env·python import-subprocess, ·os, ·datetime
VICpath="S:\Projects\OKCCT.C001.CCT\RiverWare\RedRiverBasin\VIC\DataProcessing\GridDa VICfolders=os.walk(VICpath).next()[1] for folder_in VICfolders[;]: model='MainRed_CC.mdl.gz'
····#### Modify RCL file to run model
····RCLfile=open('RW.rcl','r') ····RCLlines=RCLfile.readlines() ···tmpRCL=open('tmp.rcl','w') ····for·line in RCLlines: ····if/line.find('LoadModel.mdl.gz')>0:
- ········print>>tmpRCL,line.rstrip().replace('LoadModel.mdl.gz',model) □······elif·line.find('SaveModel.mdl.gz')>0: ·········print>>tmpRCL_line.rstrip().replace('SaveModel.mdl.gz' folder+'.mdl.gz')
<pre>elif line.find('SaveDiagnostics.txt')>0:</pre>
······································
Modify input DMI Input contol file for current model in loop ctrlFile=open('VIC_INPUT.control','r') ctrlLines=ctrlFile.readlines() tmcCtrlEile=open('tmp)//Cinput control', 'w')
■ …for-line=in-crtLines: newLine=line.rstrip().replace("LIVNEH",folder) print>>tmpCtrlFile,newLine tmpCtrlFile.close()
 ####-Modify-output-DMI-Output-contol-file-for-current-model-in-loop ctrlFile=open('ModelOutput.control','r') ctrlLines=ctrlFile.readlines() tmpCtrlFile=open('tmpModelOutput.control','w')
<pre>for-line-in-ctrlLines:newLine=line.rstrip().replace("LIVNEH",folder)print>>tmpCtrlFile,newLinetmpCtrlFile.close()</pre>
Run Model start=datetime.datetime.now() print"***`Started Running:".+model[:-7]+'_'+folder+".***" printstart
print."Run.Time:=:".+str(round(minutes,2))+'.minutes' print."***.Done.Running.".+model[:-7]+'_'+folder+".***\n"

2016 RiverWare Users Group Meeting

📄 Pyt

Model

Processor

Installed RAM

- ≈5 hrs runtime
- ≈30 min. initialization
- 4 days to run 19 models

Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz

Computer Specs.

3.70 GHz

16.0 GB

- 17 Subbasins
- 353 Water Users
 - >250 AFY
- 38 Reservoirs
- 89 Control Points

Max Flow Scenario

Flows

Reservoirs

Questions?

