

RiverWare Optimization at the Tennessee Valley Authority

Gregory D. Mueller, PE

Civil Engineer Water Resources B

February 4, 2015

Tennessee River System

Valley Rainfall and Runoff

ΙVΑ

Reservoir System Benefits

Recreation

Restricted summer drawdown to provide higher summer lake levels

Releases to support trout fishing, whitewater rafting, and drift boating

Special flows and elevations to support community events

Water Quality

Dissolved oxygen & temperature monitoring

Injection of gaseous oxygen into reservoirs

Hydrothermal often dictates operation during dry periods

Water Supply

700 water intakes (industry; thermalelectric cooling; irrigation; municipal)

Drinking water for nearly 5 million people

Reservoir System Benefits

Flood Control

Use reservoir storage to reduce flood crest and release at non-flood discharge rate after crest

Average annual flood damages averted \$240 million

Power

~10% of TVA's energy portfolio (~3500MW)

Water temperature support for thermal generating plants

Rapid dispatch and flexibility

Low O&M Costs

Navigation

652 miles of navigable waterways

~\$1B per year in shipper savings

Goal of Optimization

To work within reservoir system constraints while utilizing the flexibility of the reservoir system to

Balance system benefits

Minimize total cost of generation/Maximize hydro "Net Avoided Cost"

(net avoided cost = maximum avoided operating cost + cumulative value of storage)

Optimization Process at TVA

Operating Policy (Constraints)

Current Day Operating Schedule

Eliminate/Minimize Spill

Minimum Flow Requirements

Meet water quality, hydrothermal, and navigation needs

System Minimum Operating Guide

Balancing for Tributary Storage Reservoirs

Ensure equitable drawdown

Special Operations (Specific Flows, Reservoir Elevations, Generation)

For thermal compliance, recreation, river cleanups, etc.

Operating Policy (Constraints)

Unit Outages

Limit how much water a plant can pass without spilling

Kentucky/Barkley Operations

Meet requirements for canal flow, minimum discharge, and navigation

Coordinate with USACE during Ohio River floods

Ramp Rates

For downstream safety, due to plant limitations, etc.

Flood Guide

Protect flood storage availability

Top and Bottom of Daily Operating Zone on Run-of-river Reservoirs

Future Value of Water

Value of Project Storage

Based on current storage, estimated inflows, a target elevation or storage, and hourly market price power forecast

Hourly Market Price Power Forecast

What TVA thinks future market rate will be to us. Incorporates planned unit outages, long-term weather forecasts

POSE DATA

Hourly Hydropower Value

Hour-by-hour variations due to changes in demand and unit availability

System Load Forecast

Block Cost (all plants except hydro)

5000

BLOCK COSTS

file last updated: Jan 0607:15

Mon Tue

S11 and below

\$11 - \$15 \$15 - \$20 \$20 - \$25

\$25 - \$30 S30 - S35

\$35 - \$40 \$40 - \$50

\$50 - \$60 \$60 - \$70

S70 - S80

\$80 - \$90

S90 - S100 \$100 - \$200 \$200 and up

Copen Object - Douglas Con				
<u>File Edit View Slot A</u> ccount				
Object Name: Douglas Co	n			
Data Object	:			
Slots Attributes Description	1			
24:00 November 3, 2014	•			1~
Slot Name	Value	Units		-
M Drawdown Rate Weekly	NaN	ft	m	
M Elevation Guide 1	NaN	ft	Ω	
M Elevation Guide 2	NaN	ft	Ω	
M Elevation Guide 3	NaN	ft	Ω	_
M Elevation Guide 4	NaN	ft	\square	=
M ElevationOffset	NaN	ft	\square	
EndingTarget	NaN			
M FallDrawdown	NaN	ft	ΩΩ	
M Flood Guide	NaN	ft		
Flood Guide Departure	NaN	ft	D	
Lower80Bound	NaN	ft	Ø	
Minimum Flow Biweekly	NaN	1000 cfs	\square	
Minimum Flow Daily	NaN	1000 cfs	ΩΩ	
Minimum Flow Instantaneous	NaN	1000 cfs	៣៣	T
Order: Column Sort 🔹		🔲 Filter Sk	ots 💌	

RBS Ruleset Editor - "RBS Ruleset (f <u>Eile Edit S</u> et <u>V</u> iew	om model file)"							
B RBS Ruleset (from model file) Policy & Utility Groups Report Groups	2	RPL Set Loaded 🔗						
Name	Priority On Type	*						
Barkley Storage	1-1 🕜 Policy Gro	pup						
Fine Tune Flows To Capacity	🗸 Policy Gro	oup						
R Fine Tune Barkley Flows	2 🔀 Rule	=						
R Fine Tune Great Falls Flows	3 🖌 Rule							
Fine Tune Kentucky Flows	4 🖌 🖌 4							
Fine Tune Pickwick Flows	5 🖌 Rule							
R Fine Tune Wilson Flows	6 🖌 Rule							
R Fine Tune Wheeler Flows	7 🖌 Rule							
R Fine Tune Guntersville Flows	8 🖌 Rule							
Fine Tune TimsFord Flows	9 🖌 Rule							
Fine Tune Nickajack Flows	10 🖌 Rule							
Fine Tune Chickamauga Flov	s 🛛 🚺 🖌 Rule							
R Fine Tune WattsBar Flows	12 🖌 Rule							
R Fine Tune FtLoudoun Flows	13 🗙 Rule							
Fine Tune Cherokee Flows1	14 🖌 Rule	-						
Show: Set Description Selected Description Adv. Properties								

SCT Detailed_Daily.SCT (20141104_TVANewRulesOptPoliciesPlusBuffersPMF-Fall Policy.mdl.gz)											• ×				
<u>File E</u> dit <u>S</u> lots <u>Agg</u> regation <u>V</u> iew <u>C</u> onfig <u>D</u> MI <u>R</u> un Diagnostics <u>G</u> o To															
🕜 🔯 🗽 🏤 🕄 🖑 I	Ø		0 I	т в м	D 76	4.67014685	163508							MWH	
Series Slots Edit Series Slot List Scalar Slots Other Slots Object Grid															
Slot Label	11/3 Mon	11/4 Tue	11/5 Wed	11/6 Thu	11/7 Fri	11/8 Sat	11/9 Sun	11/10 Mon	11/11 Tue	11/12 Wed	11/13 Thu	11/14 Fri	11/15 Sat	11/16 Sun	^
► DOUGLAS															
 Adjustment 		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total local	3.08	2.89	2.75	2.82	2.50	2.39	2.28	2.18	2.08	1.99	1.90	1.82	1.74	1.64	
Total inflow		2.89	2.75	2.82	2.50	2.39	2.28	2.18	2.08	1.99	1.90	1.82	1.74	1.64	
► Storage	266.29	261.31	259.07	259.56	254.20	247.76	243.63	235.23	232.03	221.26	215.89	206.02	200.53	201.49	
Elevation	963.28	962.72	962.46	962.52	961.91	961.16	960.67	959.67	959.28	957.95	957.27	956.00	955.27	955.40	
▼ Energy		1,204	765	364	1,185	1,331	961	1,519	782	1,752	1,023	1,523	1,002	98	
6:00		131	15	15	15	334	15	329	15	235	15	14	14	42	
12:00		464	338	167	500	333	331	538	172	525	470	507	309	14	
18:00		377	337	15	336	332	234	326	271	475	70	503	223	28	
24:00		232	74	167	335	332	381	325	324	517	468	499	455	14	
 Power factor 	164	154	155	157	153	151	151	145	149	139	144	135	141	144	
 Turbine discharge 	8.15	7.87	4.98	2.34	7.86	8.82	6.41	10.58	5.28	12.76	7.27	11.68	7.23	0.68	
 Sluice discharge 		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Regulated spill		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
 Total outflow 	8.15	7.87	4.98	2.34	7.86	8.82	6.41	10.58	5.28	12.76	7.27	11.68	7.23	0.68	
► CHATUGE															
► Adjustment		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
► Total local	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.10	0.09	0.09	0.08	0.08	
			0.45	~ • •	0.40		0.40			0.40	0.00	0.00		0.00	

IVA

Enhancements in Progress

Implementation of a DELFT-FEWS hydrological forecast and warning system, which requires additional RiverWare functionality

Improvements to how we model Special Operations

Creation of model adapters that allows FEWS and RiverWare to communicate

Summary

TVA Uses RiverWare Optimization Models to

Meet TVA's operating policies

Balance river benefits

Optimize releases over the intermediate-term (next 2 weeks)

Optimize generation over the short-term (next 2 days)

Maximize the value of hydro generation to TVA

