Newlands Project Planning Study RiverWare User's Meeting Heather Gacek and Tom Scott August 27, 2013

Agenda

- Overview of Newlands Project
- Newlands Project Planning Study
- Use of RiverWare

OVERVIEW OF THE NEWLANDS PROJECT

Newlands Project Background

- Federal irrigation project started under the Bureau of Reclamation in 1903.
- Serves water rights in the Truckee and Carson divisions.
- Operated and maintained by the Truckee-Carson Irrigation District (TCID) under contract with Reclamation since 1926.

PRECISION

PWRE

RECLAMATION

A Century of Changes

- Once exclusively agriculture
- Now includes wetlands and municipal users
- Urbanization Conversion of agricultural land to residential neighborhoods

Fernley 1948

Fernley 2001

RECLAMATION

RECLAMATION

Truckee Canal Breach

- January 4, 2008 Truckee Canal flows increased sharply overnight to 750 cfs
- ~4 am January 5 50 feet of embankment collapsed.
 - 590 properties flooded
 - No fatalities

Truckee Canal Rewatering

- March 2008 Canal flows resume at a reduced flow of 150 cfs
- May 16, 2008 Reclamation conditionally approves increasing the canal flows to a maximum 350 cfs

PRECISION

350 cfs, 6-7 ft. deep, 6-7 ft. freeboard

Purpose and Authorization

- 2009 Federal Omnibus Appropriations Act: Funding to "determine the full extent of rehabilitation needed for the canal to resume flows above 350 cubic feet per second."
 - Assess the canal's problems and risks.
 2011 Risk Assessment
 - Develop canal risk reduction alternatives.
 2011 Corrective Action Study
 - Conduct a planning study to investigate Project alternatives.

2013 Planning Study

NEWLANDS PROJECT PLANNING STUDY

Planning Study Objectives

Formulate alternatives to meet the following objectives:

- Reduce public safety risk from operating the Truckee Canal.
- Satisfy the exercise of Newlands Project water rights.

RECLAMATIO

Study Water Supply Objective

- Study based on:
 - Historical hydrology
 - 0-600 cfs Truckee Canal
 - Current regulations

RECLAMATIC

RIVERWARE IN THE NEWLANDS PROJECT PLANNING STUDY

PRECISION

RE

w

Modeling Overview

- PWRE contracted with MWH to perform modeling for the Newlands Project Planning Study
- Used the Truckee River Existing Conditions Planning Model
 - 100 Year Historic Hydrology Dataset
 - Daily Timestep
 - ≈2 Hour Run Time

PRECISION

WRE

- Modeled Preliminary Alternatives (64 Model Runs)
 - 6 Reference Scenarios
 - 0 cfs, 150 cfs, 250 cfs, 350 cfs, 600 cfs, and 900 cfs Truckee Canal Capacity
 - 59 Alternative Scenarios
 - 11 Measures Considered in addition to Truckee Canal Capacity
 - Combined for 24 Preliminary Action Alternative Plans
- Modeled Final Alternatives (21 Model Runs)
 - 7 Final Action Alternative Plans

Overview Summary

- 1. That is a lot of model runs...
- 2. That is a lot of time...
- 3. That is a lot of models to keep track of...
- 4. That is a lot of data to compile...
- 5. That is overwhelming.

We needed to get organized.

Study Organization

- Created a list of scenarios to be studied
 - Varying the Truckee Canal Capacity,
 - Varying Demands, Etc.
- Determined the model changes that need to be made for each scenario
- Grouped scenarios

based upon model changes

Created a "Run Menu"

		Truckee Canal Capacity						T.Canal Seepage	
		0 cfs	150 cfs	250 cfs	350 cfs	600 cfs	900 cfs	Current	15%
1	Test 1	х						х	
2			х					x	
3				x				х	
4					x			x	
5						х		х	
6							х	x	
7	Test 2		x						x
8				X					x
9					х				x
10						X			x
11		х						х	

RECLAMATIO

MRM vs. Batch Mode

MRM

- Each run must have the:
 - Same Timestep
 - Same Duration
 - Same Output Slots
 - RiverWare keeps track of the run number and updates the DMI accordingly
- Automated Process

PWRE

- RiverWare initiates runs without user interaction
- Preconfigured within RiverWare
- Specify Inputs through a DMI
 - Change the Truckee Canal capacity or other series slot
- Does not save model with results
 - If additional output data is needed, the model needs to be re-run

PRECISION

Batch Mode

- Each run can have different:
 - Timestep
 - Duration
 - Output Slots
 - DMI's can be invoked through a script
- Automated Process
 - Initiate runs using a script without user interaction
- Not Preconfigured within RiverWare
 - Specify Inputs through a script
 Change the Truckee Canal capacity or other scalar slot
- Saves model with results
 - If additional output data is needed, open up the model and export it

File Organization

• Set up a file structure for making runs in batch mode

- Script File
- Starting Model Folder
 - GFS
 - Ruleset
 - Model
- Final Models Folder

- Saved with run results and input changes from the script
- Output File

Model Preparation

- Created a list of desired output values
- Created a new data object to store the output slots
- Created an Output DMI
 - Requested new RiverWare development to facilitate collection of output:
 - Components of a RiverWare Dataset can now be configured through a script.

Model Preparation

- Developed study specific RiverWare logic that pertains to all scenarios and updated the base model.
- Created a "Starting" model for each test
 - Made the changes that applied to all scenarios within the test
 - Changes that varied between the scenarios were set via the script

Batch Mode

• Wrote a Script for each test (.rcl file)

- 1. Open the Starting Model
- 2. Load the GFS
- 3. Load the Ruleset
- 4. Set Slot Values
- 5. Run the Model
- 6. Set Output DMI Parameters
- 7. Run Output DMI
- 8. Perform a Save As on the Model
- 9. Close the Model
- 10. Repeat for the next Scenario

Results

Key: cfs = cubic feet per second; TAF = thousand acre-feet

Figure 4-8. Summary of Differences Between the Desired Reliability and Reference Scenarios, Expressed in Volume

RECLAMATION

PWRE PRECISION

350 cfs, Lined Canal

250 cfs, Lined Canal, Dry Year Demand Reduction

