

RiverWare[™] Model of Dallas Water Supply System

Denis Qualls, **Varghese Abraham**, & Larry Brown (Dallas Water Utilities) Ken Choffel, Cory Shockley, Sumant Mallavaram, & **Ted Shannon** (HDR Engineering)

City of Dallas Water Utilities (DWU)

- The Water Department was founded in 1881
- DWU is funded from water and wastewater revenues, and does not receive tax dollars
- Approximately 1,500 employees
- Population served
 - 1.26 million Dallas
 - 1.06 million in 28
 wholesale customer cities
 - 2.32 million total
- 699 square mile service area

City of Dallas Water Assets

- 7 reservoirs (5 connected and 2 currently not connected)
- 4,800 miles of water mains
- 4,200 miles of wastewater mains
- 3 Water treatment plants with a combined capacity of 900 MGD
- 23 pump stations
- 9 elevated and 12 ground storage tanks
- Value of water assets \$1.856 Billion in 2008
- Combined water and wastewater system outstanding debt \$2.258 Billion in 2008

Supply System Map

Proposed Palestine Pipeline Corridors

Future Supplies/Pipelines

- Replace existing Tawakoni pipelines to allow full utilization of Lake Fork supply
- Connect Lake Palestine (2018)
 - Integration study in partnership with Tarrant County Regional District (TRWD)
 - Dallas System (150 MGD capacity)
 - TRWD System (197 MGD Capacity)
- STELLA model (CDM, 2010) feasibility study
- RiverWare[™] Model (HDR, 2010) future operations/planning

DWU RiverWare Model Overview

- Goals:
 - Firm yield
 - Operational planning
 - Operational optimization
 - Forecasting/Annual operation planning
- Monthly timestep with
 - daily step out capability
- Key Components
 - Reservoirs (13)
 - Pipelines/ Pump Stations
 - Hydrology (1907 2007)
 - Water Demands (2010 to 2060)
 - Demand Management Options
 - Climate Change Options
 - Water Rights Options
 - Return Flow Options

Hydrology – Period of Record

Date

Hydrologic Trends

Climate Based Demands

- Reservoir Evaporation
 - Historic
 - Climate change scenarios
- System Demands
 - Incorporate water conservation
 - Historic past droughts
 - Climate change scenario impacts

Climate Change

- HDR Atmospheric Sciences Group
- Water Supply Planning and Prediction
 - Hydro-climate Indices (HCI)
 - Hydro-Climate Atmospheric Indexed Runoff Prediction (HARP)
 - Paleo-Climatology Records (Tree-Rings)
- Climate Change Impact Assessment
 - Cyclical-Trending Analyses (CTA)
 - Hydro-Climate Change Utilization Prediction tools (HYCCUP)
 - GCM Model Output Scenario Modeling
 - GCM-Downscaling Gridded Output using Statistical and/or Dynamic (MM-5) s
- Sustainable Return on Investments (SROI)

Thank you. Questions?

