

Engineering Algorithms

RiverWare User Group Meeting August 13-14, 2008

David Neumann

Outline Engineering method changes Water Quality MODFLOW link

Disaggregation Methods

Reach

Gain loss methods

- Base Plus Fractional Constant plus a percentage
- Periodic Gain Loss Use periodic slot

New Routing Methods

- Muskingum Cunge Improved method Better mass conservation
- Variable Step Response Routing coefficients are determined based on flow rate

Water User

Fraction Return Flow Input category added – How Fractional Return Flow slot is specified:

- Input (default, existing)
- Zero
- Periodic

Dispatch Method Changes: Depletion Requested is no longer a required known in two of the dispatch methods: solveStandAlone_GivenDivReq solveSequential_GivenDivReq

Water Quality

Effort to make it work in new contexts

Fixed bugs:

- Controller: Inline WQ with Rules and Accounting
- Salinity:
 - Better support when reservoir runs out of water
 - Linking Salt Concentration Slots Weighting multislots

Documentation added to RiverWare Help

RiverWare – MODFLOW link

- User can now link a RiverWare model to a MODFLOW model
- Method selections on objects

Computational Subbasin: manages data exchange

- User input "Maps" to allow data from one or multiple MODFLOW cells/segments to be mapped to a RiverWare object
- "Exchanged Data" is displayed as aggregated or disaggregated, as necessary, for all exchanged values

Computational SubBasin

SubBasin 1.Reach Stage and GainLoss Map

File Edit View Adjust

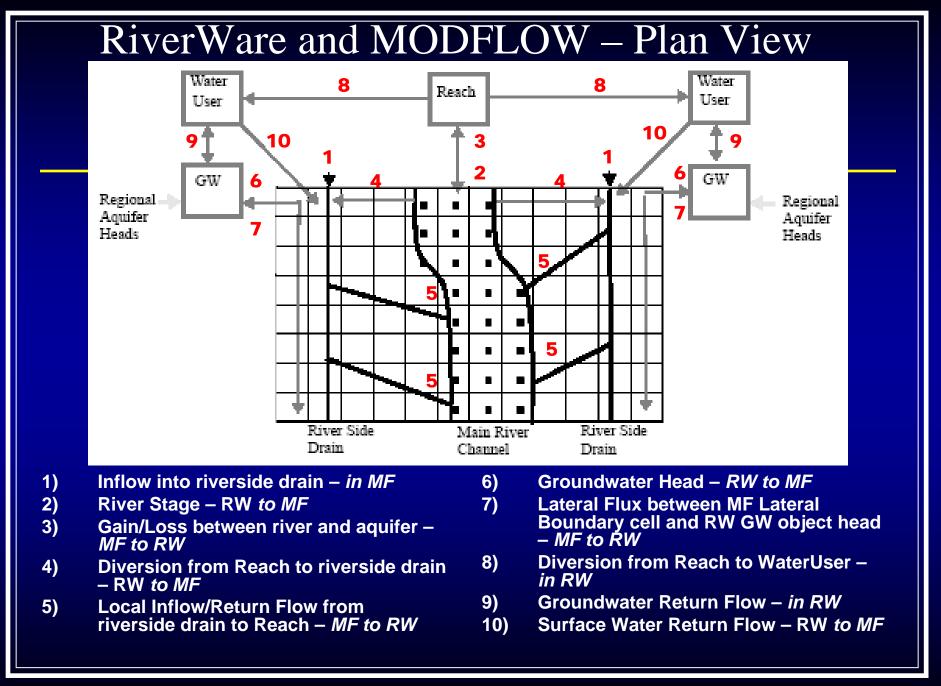
🔳 Reach Stage and GainLoss Map

Va Va	lue: 1				N	ONE
	Layer NONE	Row NONE	Column NONE	Inflow Stage Weight NONE	Outflow Stage Weight NONE	^
0: Reach0	1.00	1.00	4.00	0.90	0.10	
1: Reach0	1.00	2.00	4.00	0.60	0.40	
2: Reach0	1.00	2.00	5.00	0.60	0.40	
3: Reach0	1.00	3.00	5.00	0.10	0.90	
4: Reach0	1.00	3.00	6.00	0.10	0.90	
5: Reach0	1.00	3.00	7.00	0.10	0.90	
6: Reach1	1.00	4.00	6.00	0.80	0.20	
7: Reach1	1.00	4.00	7.00	0.80	0.20	
8: Reach1	1.00	5.00	6.00	0.50	0.50	
9: Reach1	1.00	5.00	7.00	0.50	0.50	
10: Reach1	1.00	6.00	7.00	0.10	0.90	
11: Reach1	1.00	6.00	8.00	0.10	0.90	
12: Reach2	1.00	7.00	7.00	0.90	0.10	
13: Reach2	1.00	7.00	8.00	0.90	0.10	
14 [.] Beach2	1 00	8.00	8.00	N 4N	0.60	~

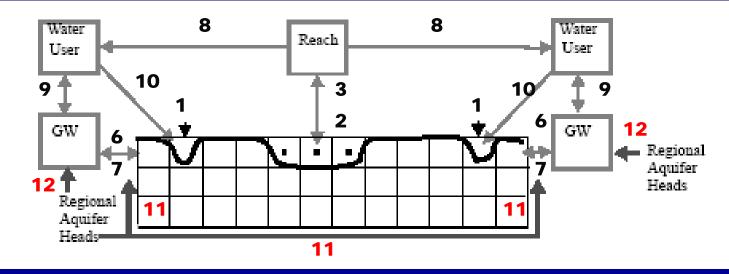
Map slot: Specified by the User

 Rows must be labeled with the corresponding object name

August 13 -14, 2008

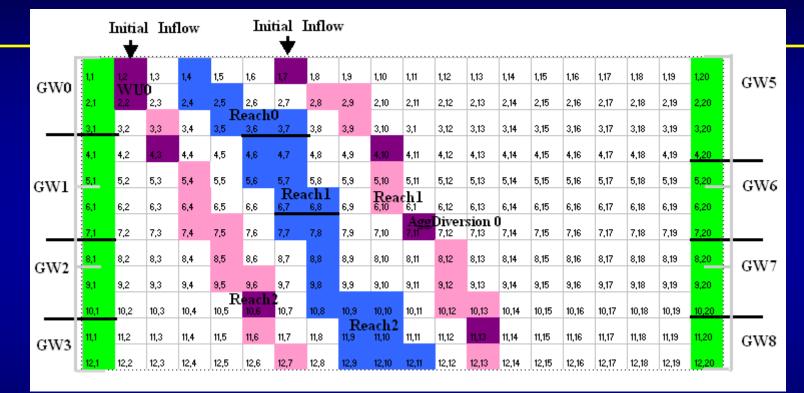

2008 RiverWare User Group Meeting

Computational Subbasin

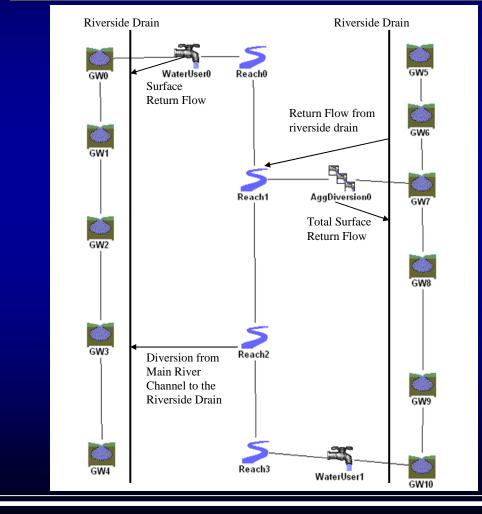

SubBasin 1.Re	each Stage to MC	DFLOW					
File Edit View Ad	ijust						
Value:	ach Stage to MODFL(553.388833333	DW					
Scroll: January 9	3, 2007					*	<u>l</u>
	Reach0 1, 1, 4 m	Reach0 1, 2, 4 m	Reach0 1, 2, 5 m	Reach0 1, 3, 5 m	Reach0 1, 3, 6 m	Reach0 1, 3, 7 m	Rea 1, 4, m
01-09-2007 Tue	553.39	552.85	552.85	553.39	553.39	553.39	
01-10-2007 Wed	553.52	552.97	552.97	553.52	553.52	553.52	
01-11-2007 Thu	553.46	552.91	552.91	553.46	553.46	553.46	
<							>

Data Exchange slot: Column Headings show the MODFLOW cell identifier and the corresponding RiverWare Object

August 13 -14, 2008

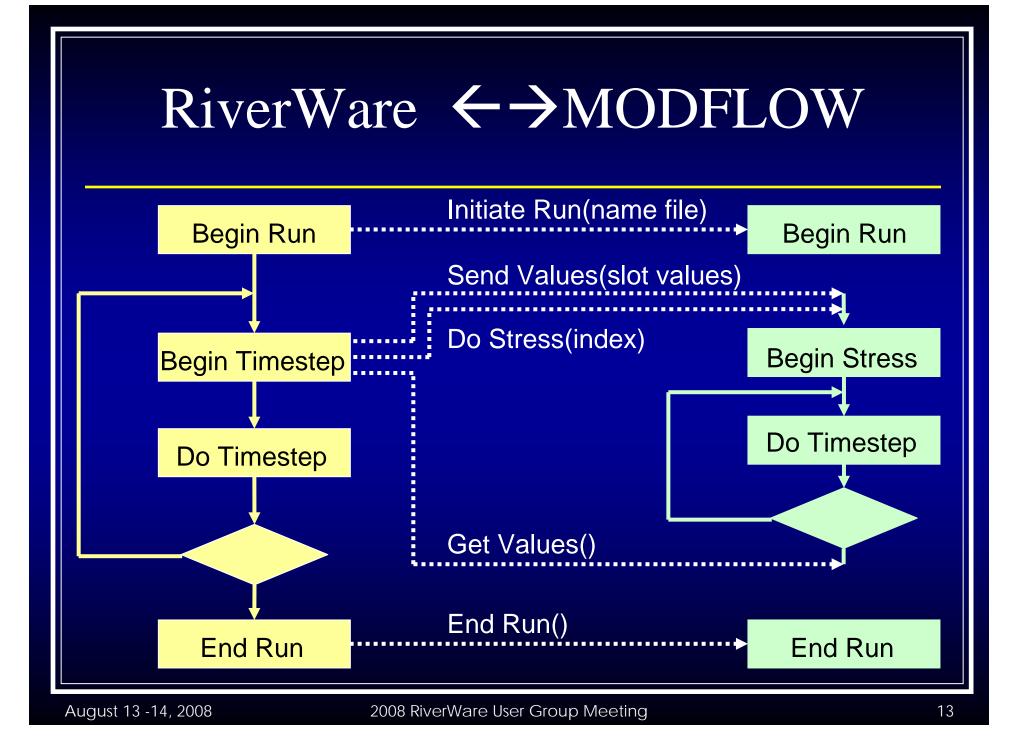

RiverWare and MODFLOW – Cross Section

- 1) Inflow into riverside drain in MF
- 2) River Stage RW to MF
- 3) Gain/Loss between river and aquifer *MF to RW*
- 4) Diversion from Reach to riverside drain RW to MF
- 5) Local Inflow/Return Flow from riverside drain to Reach *MF to RW*
- 6) Groundwater Head RW to MF
- 7) Lateral Flux between MF Lateral Boundary cell and RW GW object head – *MF to RW*


- 8) Diversion from Reach to WaterUser – *in RW*
- 9) Groundwater Return Flow *in RW*
- 10) Surface Water Return Flow RW *to MF*
- 11) Regional Aquifer Heads in MF (input by user)
- 12) Regional Aquifer Heads in RW (input by user)

MODFLOW Example Model

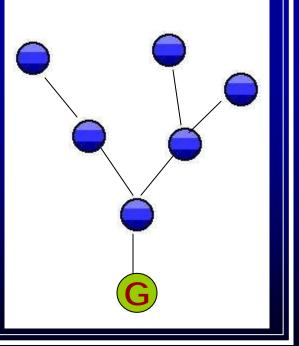
- Green GHB Boundary Cells. Matching RiverWare Groundwater Storage Objects shown (summation between black dividers, interpolation between gray dividers).
- Blue RIV Boundary Cells. Matching RiverWare Reachs Objects shown
- Pink/Purple STR or SFR Segments (purple indicates start of a segment). Matching RiverWare Water User and AggDiversion Site Objects shown.


RiverWare Example Model

- Optional Data
 Transfers are shown
- Mandatory Data transfers are on
 - Reach object
 - Stage
 - GainLoss
 - Groundwater
 Storage Object
 - GW Elevation
 - Lateral Flux

August 13 -14, 2008

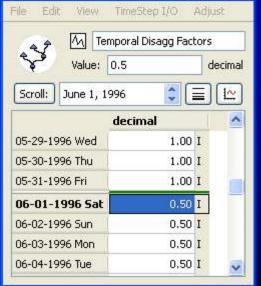
2008 RiverWare User Group Meeting



Disaggregation of Local Inflows

- 1. Spatial: Gage control point to upstream control points
- 2. Temporal: monthly to daily
- 3. Incremental: cumulative to local
- Methods are executed in this order, where applicable
- Methods are selected on computational subbasin and on each object

Spatial Disaggregation of Local Inflows


- Lower Neches Valley Authority (LNVA)
- Flow known at one control point in a subbasin, spatially distribute that flow to other control points using
 - NRCS Curve Number
 - Mean Precipitation
 - Drainage Area
- Method executes at beginning of run
- User saves model and disables subbasin
- Spatial disagg method flexible to support different timestep sizes

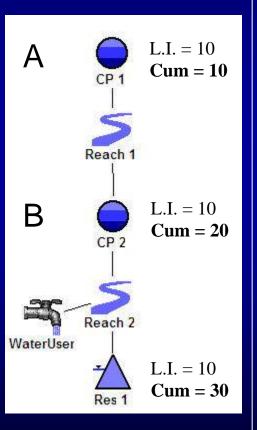
Temporal Disaggregation of Local Inflows

- LNVA method to calculate daily flow values given monthly data and daily factors
- Method executes at beginning of run
- User saves model and disables subbasin

File Edit Vie	w TimeStep I/O Adj	ust
	Distributed Flow	
Valu	ie: 300	cms
Scroll: June,	1996 🚺 🧮	
cm	s I	
05-1996	200.00 I	
06-1996	300.00 <mark>I</mark>	

🔲 Temporal Disagg Subb... 📮 🗖 🔀

August 13 -14, 2008


2008 RiverWare User Group Meeting

Incremental Disaggregation of Local Inflows

- USACE and LNVA local inflows to control points (and reservoirs) is cumulative
 - Problem: local inflow potentially added to the system more than once.
 - Problem: when diversions are introduced, local inflows cannot be diverted
- Calculate the incremental local inflows given cumulative data:

$$B_{(t) \text{ incremental}} = B_{(t) \text{ cum}} - A_{(t) \text{ cum routed}}$$

 Use routing method(s) on intervening reach(es) to calculate routed flow

Timing – 1 of 2 approaches

At beginning of run – Initial implementation – LNVA

- Calculation done only once or as needed based on method selection
- Comp Subbasin method executed at beginning of run for all subbasin(s)
- Users should save model with calculated incrementals and then disable the subbasin(s)

Timing – 2 of 2 approaches

At beginning of each timestep – forecasting – USACE

- Forecast cumulative inflows into forecast period
- Calculate incrementals for each timestep in forecast period
- Repeat at next timestep