Brown and Caldwell
US Bureau of Reclamation

Capturing Non-Storable Flows in the Lower Colorado River and All American Canal

Anthony M. Dubin, PE Brown and Caldwell tdubin@brwncald.com

March 1, 2005

Brief Introduction to the Issues...

- US / Mexico Colorado River Treaty dates to 1944
- Lower Colorado River
 - 9 million ac-ft (MAF) released from Lake Mead
 - 7.5 MAF delivered to US water right holders
 - ~4 MAF to Imperial Irrigation District (IID)
 - 1.5 MAF delivered to Mexico: NIB & SIB
 - Typically 60,000 to 250,000 AF annual excess delivery

All American Canal

- Capacity = 10,155 cfs; generates power
- Delivers water to IID; faster route to NIB
- AAC lining project

Lake Havasu City CALIFORNIA arker Blythe Coachella Study Area Brawley El Centro -Calexico All-American Canal San Luis MEXICO

Project Area

Facilities:

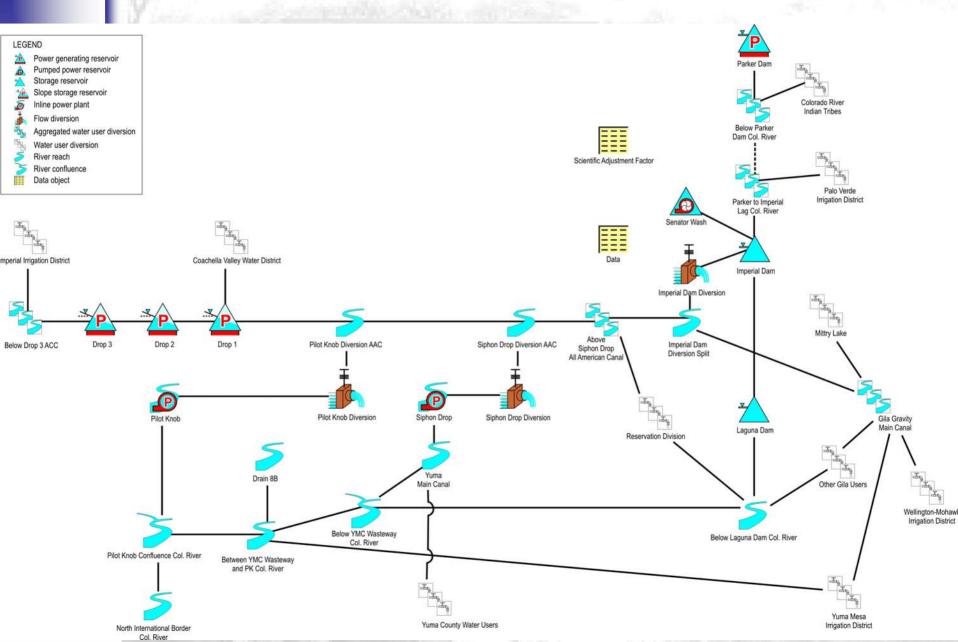
- Parker Dam
- Imperial Dam
- Senator Wash
- Laguna Dam
- All AmericanCanal

Users:

- Palo Verde
- Gila Gravity Main Users
- Imperial Irr. Dist.
- Coachella Valley
- Yuma County
- Reservation
 Division

How Non-Storable Flows Develop

- Constraints on operations and water scheduling
 - Three-day travel time from Parker Dam to major diversion at Imperial Dam
 - Irrigation Districts may change orders after water is released from Parker Dam
 - Limited storage d/s of Parker Dam



Capturing Non-Storable Flows... Our RiverWare Study

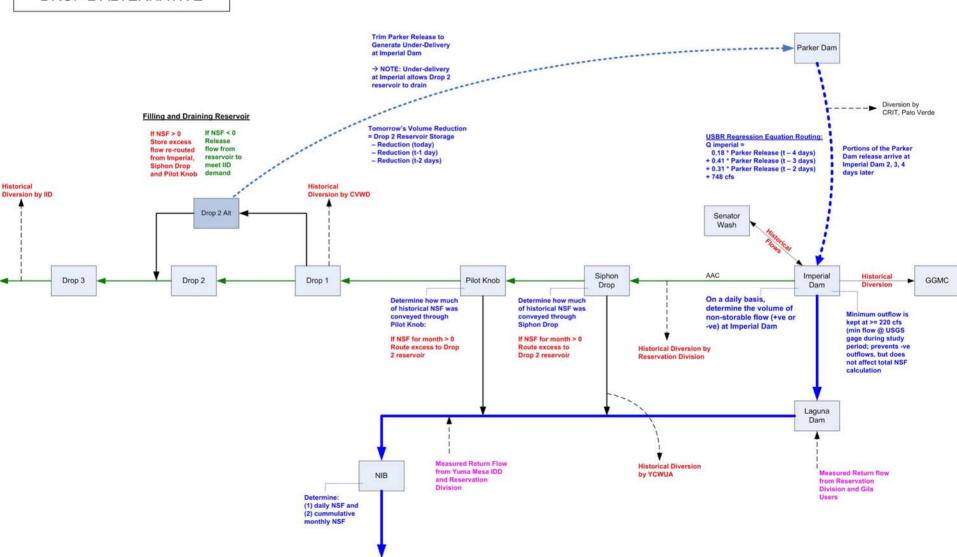
- Evaluate different sites & reservoir sizes
- Historical operation used as baseline
- What if experiments revise historical operations to use proposed reservoir
- Multi-objectives not considered in this study
 - Power generation
 - Salinity management
 - Senator Wash reservoir optimization

RiverWare View of the Area

Calibrating the RiverWare Model

- Viable model should reproduce flow measurements at NIB
- Seems simple, but it isn't!
- Quantify sources of uncertainty
 - Time lag from Parker to Imperial Dam
 - Gauge uncertainties
 - Gaining and losing reaches downstream of Laguna Dam
- Incorporate seasonal corrections as "Hydrologic Inflows" to attain seasonal and annual mass balance between RiverWare model and NIB gauge

Incorporating New Reservoir into RiverWare Model


- Add new reservoir to RiverWare model
 - Set size, inlet/outlet capacities
- Incorporate rules and constraints
 - For each day, recognize and route excess flow to new reservoir
 - Excess flow delivered via 3 pathways to NIB
 - LCR, Pilot Knob, Siphon Drop
 - RiverWare routes a portion of historical flows to new storage reservoir
 - Trims tomorrow's release from Parker Dam

Drop 2 Reservoir Example

DROP 2 ALTERNATIVE

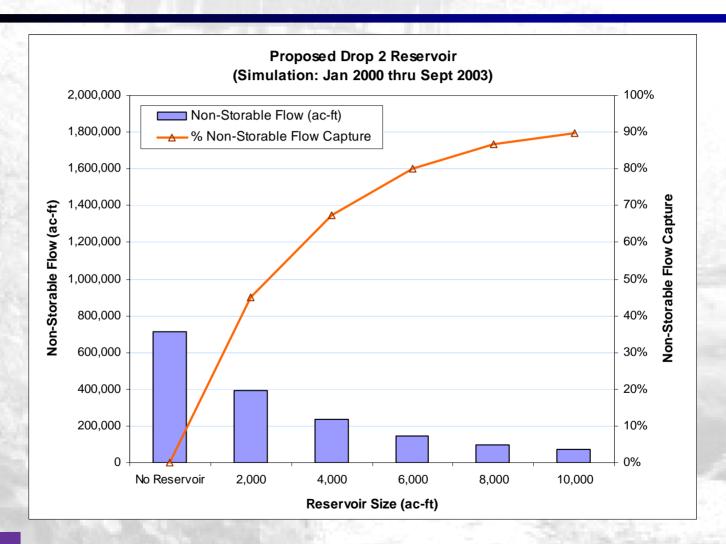

Proposed Reservoir Sites and Sizes

Table 8-1 Storage Alternatives and Capacities Considered and Evaluated

Storage Alternative Senator Wash Reservoir	Storage Capacity Options Evaluated (AF)				
	4,700	Ase.	ZA	41.00	
Laguna Reservoir	2,000	4,000			1
Drop 1 Reservoir	1,500	3,000	6,000	43	53-5
Drop 2 Reservoir	2,000	4,000	6,000	8,000	10,000

Drop 2 Reservoir Summary Results

Next Steps in AAC Lining and Reservoir Projects...

- USBR proceeding with AAC lining project and Drop 2 reservoir
- Starting operations study of proposed Drop 2 reservoir
 - Revise non-storable flow capture analysis based on proposed flow control equipment
 - RiverWare and HEC-RAS analysis
 - Link to other USBR operations/controls studies

Acknowledgements

USBR

- Terry Fulp: assisted with model development
- Scott Foster: project manager
- Don Young: described LCR plumbing
- Jim Keith: review and comments

CADSWES

- Edie Zagona
- Katrina Grantz

Brown and Caldwell

- Yonia Akini, technical partner
- Ruben Zubia, project manager

