
Technical Documentation Version 7.3
The
may
mec
righ

The
this
or p
RPL Predefined
Functions
se documents are copyrighted by the Regents of the University of Colorado. No part of this document
 be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic,
hanical, recording or otherwise without the prior written consent of The University of Colorado. All
ts are reserved by The University of Colorado.

 University of Colorado makes no warranty of any kind with respect to the completeness or accuracy of
 document. The University of Colorado may make improvements and/or changes in the product(s) and/
rograms described within this document at any time and without notice.

RPL Predefined Functions
Table of Contents
RPL Predefined Functions ..1

Abs .. 1

AccountAttributes .. 2

AccountNameFromPriorityDate ... 2

AccountNamesByAccountType ... 3

AccountNamesByWaterOwner ... 4

AccountNamesByWaterType .. 4

AccountNamesFromObjReleaseDestination and AccountNamesFromObjRelea-
seDestinationIntra .. 5

AccountPriorityDate .. 6

AnnualEventCount ... 7

AnnualEventLastOccurrence .. 8

AnnualEventStats .. 9

AvgObjectsAggregatedOverTime .. 12

AvgObjectsAtEachTimestep ... 13

AvgTimestepsAggregatedOverObjects ... 14

AvgTimestepsForEachObject ... 15

Ceiling ... 16

ColumnLabel ... 17

ColumnLabels ... 18

CompletePartialDate ... 18

ComputeReservoirDiversions .. 20

DateMax .. 22

DateMin ... 23

DatesInPeriod ... 24

DateToNumber ... 25

Destinations ... 25

DestinationsFromObjectReleaseType ... 26

DispatchCount ... 27

 DispatchEndDate .. 27

DispatchTime ... 28

Div ... 28
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

ii

RPL Predefined Functions
Table of Contents

ii
ElevationToArea ... 29

ElevationToAreaAtDate ... 30

ElevationToMaxRegulatedSpill ... 31

ElevationToStorage ... 32

ElevationToStorageAtDate .. 33

ElevationToUnregulatedSpill .. 34

Exp .. 35

FilterByObjType ... 36

FlattenList ... 37

FloodControl .. 37

Floor .. 38

FlowToVolume ... 39

Fraction ... 39

Get3DTableVals .. 41

Get3DTableValsSkipNaN ... 42

GetAccountFromSlot ... 43

GetAllNamedBasins ... 43

GetColMapVal ... 44

GetColumnIndex .. 45

GetDate ... 46

GetDates ... 46

GetDatesCentered .. 47

GetDayOfMonth .. 48

GetDayOfYear ... 49

GetDaysInMonth .. 50

GetDisplayVal ... 51

GetDisplayValByCol .. 52

GetElementName ... 52

GetEnsembleTraceValue ... 53

GetEnsembleValue .. 54

GetJulianDate ... 54

GetLinkedObjs ... 55

GetLowerBound ... 56

GetLowerBoundByCol ... 56

GetMaxOutflowGivenHW ... 57

GetMaxOutflowGivenInflow .. 59
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

iii

RPL Predefined Functions
Table of Contents

iii
GetMaxOutflowGivenStorage ... 61

GetMaxReleaseGivenInflow .. 64

GetMinSpillGivenInflowRelease ... 66

GetMonth .. 67

GetMonthAsString ... 68

GetNumbers ... 68

GetObject .. 69

GetObjectDebt .. 70

GetObjectFromSlot .. 71

GetPaybackDebt .. 71

GetRowIndex .. 72

GetRowIndexByDate .. 73

GetRunCycleIndex ... 74

GetRunIndex ... 74

GetSelectedUserMethod ... 75

GetSeriesSlots ... 76

GetSlot .. 76

GetSlotName .. 77

GetSlotVals and GetSlotValsNaNToZero ... 78

GetSlotValsByCol and GetSlotValsByColNaNToZero .. 79

GetTableColumnVals & GetTableColumnValsSkipNaN ... 80

GetTableRowVals & GetTableRowValsSkipNaN ... 81

GetTimestep ... 82

GetUpperBound ... 83

GetUpperBoundByCol ... 83

GetYear ... 84

GetYearAsString .. 84

HasFlag ... 85

HasRuleFiredSuccessfully .. 87

HydropowerRelease .. 88

HypSim .. 93

HypLimitSim ... 95

HypLimitSimWithStatus .. 97

HypTargetSim ... 99

HypTargetSimWithStatus .. 102

IntegerToString .. 104
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

iv

RPL Predefined Functions
Table of Contents

iv
IntegerWithUnitsToString ... 105

IsControllerRBS ... 106

IsEven ... 106

IsInput ... 107

IsOdd ... 107

LeapYear ... 108

ListDownstreamObjects .. 108

ListSlotSet .. 110

ListSubbasin .. 111

Ln ... 111

Log .. 112

Max .. 113

MaxItem ... 113

MaxObjectsAggregatedOverTime .. 114

MaxObjectsAtEachTimestep ... 115

MaxTimestepsAggregatedOverObjects ... 116

MaxTimestepsForEachObject ... 118

MeetLowFlowRequirement ... 119

MemoryUsage .. 122

Min ... 122

MinItem ... 123

MinObjectsAggregatedOverTime ... 123

MinObjectsAtEachTimestep ... 124

MinTimestepsAggregatedOverObjects .. 126

MinTimestepsForEachObject ... 127

Mod .. 128

NetNonShortDiversionRequirement .. 129

NetSubbasinDiversionRequirement ... 130

NextDate ... 133

NumberToDate ... 134

NumberToYear ... 135

NumColumns/NumRows .. 135

ObjAcctSupplyByWaterTypeRelTypeDestType ... 136

ObjectAttributeValue ... 137

ObjectHasAttributeValue ... 138

ObjectiveValue .. 138
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

v

RPL Predefined Functions
Table of Contents

v

ObjectsFromAccountName .. 139

ObjectsFromAttributeValue .. 139

ObjectsFromWaterType ... 140

OffsetDate ... 140

OperatingHeadToMaxRelease .. 141

OptDualPrice .. 143

OptReducedCost .. 144

OptReducedCostByCol ... 145

OptValue ... 146

OptValueByCol ... 147

OptValuePiecewise .. 148

Percentile .. 148

PercentRank ... 150

PreviousDate .. 150

RanDev ... 152

Random, RandomNormal .. 153

ReleaseTypes ... 154

ReleaseTypesFromObject ... 154

ResetRanDev ... 156

Reverse ... 157

RowLabel ... 157

RowLabels ... 158

RunStartDate and RunEndDate .. 159

RunTime .. 159

SlotCacheValue .. 160

SlotCacheValueByCol ... 161

SlotWeightedAverageOverTime ... 162

SolveInflow ... 163

SolveOutflow .. 164

SolveOutflowGivenEnergyInflow ... 165

SolveShortage .. 166

SolveSlopeStorageGivenInflowHW .. 167

SolveSlopeStorageGivenInflowOutflow .. 168

SolveStorage .. 169

SolveSubbasinDiversions ... 171

SolveTurbineRelGivenEnergyInflow .. 174
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

vi

RPL Predefined Functions
Table of Contents

vi
SolveWaterRights and SolveWaterRightsWithLags ... 175

Sort .. 178

SortPairsAscending, SortPairsDescending .. 179

SourceAccountAndObject .. 180

Split ... 180

StorageToArea ... 181

StorageToAreaAtDate .. 182

StorageToElevation ... 184

StorageToElevationAtDate .. 185

Sum ... 186

SumAccountSlotsByWaterType ... 186

SumByIndex ... 187

SumFlowsToVolume and SumFlowsToVolumeSkipNaN 188

SumFlowsToVolumeByCol and SumFlowsToVolumeByColSkipNaN 190

SumObjectsAggregatedOverTime ... 191

SumObjectsAtEachTimestep .. 192

SumSlot and SumSlotSkipNaN ... 193

SumSlotByCol and SumSlotByColSkipNaN .. 194

SumTableColumn .. 195

SumTableRow .. 195

SumTimestepsAggregatedOverObjects .. 196

SumTimestepsForEachObject .. 197

SupplyAttributes .. 199

SupplyNamesFrom, SupplyNamesFrom1to1 .. 200

SupplySlotsFrom, SupplySlotsFrom1to1 .. 202

SupplyNamesFromIntra, SupplyNamesFromIntra1to1 .. 203

SupplySlotsFromIntra, SupplySlotsFromIntra1to1 .. 205

SupplyNamesTo, SupplyNamesTo1to1 ... 207

SupplySlotsTo, SupplySlotsTo1to1 ... 209

SupplyNamesToIntra, SupplyNamesToIntra1to1 .. 211

SupplySlotsToIntra, SupplySlotsToIntra1to1 .. 213

TableInterpolation .. 214

TableInterpolation3D ... 215

TableLookup ... 217

TargetHWGivenInflow .. 218

TargetSlopeHWGivenInflow .. 219
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

vii

RPL Predefined Functions
Table of Contents

vii
ToCelsius, ToFahrenheit, ToKelvin .. 221

VolumeToFlow ... 221

WaterOwners .. 222

WaterTypes ... 222

WeightedSum ... 223
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

RPL Predefined Functions
RPL Predefined FunctionsRPLPredefinedFunctions.pdf

Introduction: This section describes the predefined RiverWare functions which are available for use in
any RiverWare Policy Language (RPL) set.
Predefined functions perform a wide range of calculations common to water management policy and its
expression in a rule context. Some predefined functions provide rules with access to the same
algorithms used in RiverWare simulation for mass balance calculations, flow/volume conversions, and
table lookups. Other predefined functions are available for common mathematical operations, date/time
manipulations, topographical evaluations, and some specialized river basin management calculations.
Predefined functions are used in RPL sets in the same way as user defined custom functions. They are
selected from the palette, and inserted into a rule, internal function, or other expression. Each
predefined function is an expression which evaluates to one of the 7 rules data types:

1. NUMERIC

2. BOOLEAN

3. DATETIME

4. OBJECT

5. SLOT

6. STRING

7. LIST

Predefined functions may or may not have arguments. The computational algorithms and arguments to
predefined functions may not be modified.

1. Abs

This function evaluates to the absolute value of its single numeric argument.

RPLPredefinedFunctions.pdf RPL Predefined Functions

Description Absolute value operator

Type NUMERIC

Arguments Type Meaning

1 NUMERIC value to evaluate

Evaluation Determines the absolute value of the numeric argument
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

2

RPL Predefined Functions
AccountAttributes

2

Syntax Example:

Abs(-11 "cfs") returns 11 "cfs"

Use Examples:

IF(Abs(res.Inflow[] - res.Inflow[@"Next Timestep"]) < 1 "cms") THEN TRUE

2. AccountAttributes

Syntax Example:

AccountAttributes("ResA^GoodWater")

Return Example:

{"Intra-basin Transfer", "Big City", "StorageAccount"}

3. AccountNameFromPriorityDate

This function evaluates to the name of the account having the specified priority date.

Comments none

Description
Given a string representing an account’s full name (object^account), returns a
list containing the account’s attributes, i.e., the account’s water type, water
owner, and account type.

Type LIST {STRING, STRING, STRING}

Arguments Type Meaning

1 STRING The name of the account.

Evaluation

Comments

Description
This function returns the name of the account having the specified priority
date.

Type STRING

Arguments Type Meaning

1 DATETIME The priority date.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

3

RPL Predefined Functions
AccountNamesByAccountType

3

Syntax Example:

AccountNameFromPriorityDate (@"12:00:00 August 12, 2004")

Return Example:

"Account1"

4. AccountNamesByAccountType

This function evaluates to the list of names of Accounts on the specified Object having the indicated
Account type.

Syntax Example:

AccountNamesByAccountType (%"Heron Reservior", "Storage")

Return Example:

{"Account1", "Account2"}

Evaluation The Accounts in the system are examined; the Account having the
indicated priority date is returned.

Comments

Priority dates are a property of Accounts.

It’s an error if no account has the specified priority date.

Description

This function returns a list of names of Accounts on a specified Object
having the indicated Account type, sorted in ascending Account priority
date order. Accounts which don’t have a priority date are at the end of the
list, sorted in ascending name order.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

2 STRING
Account type name (currently, one of "Diversion",
"Storage", or "PassThrough") or "ALL".

Evaluation

The set of Accounts on the Object are examined. The names of the
Accounts having the specified account type are added to the returned list.

If the Account type argument is "ALL," then that attribute is ignored. The
returned list will contain the names of ALL Accounts on the Object.

The list is sorted as described above.

Comments Priority dates are properties of Accounts.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

4

RPL Predefined Functions
AccountNamesByWaterOwner

4

5. AccountNamesByWaterOwner

This function evaluates to the list of names of Accounts on the specified Object having the indicated
WaterOwner.

Syntax Example:

AccountNamesByWaterOwner (%"Heron Reservior", "Contractor2")

Return Example:

{"Account1","Account2"}

6. AccountNamesByWaterType

This function evaluates to the list of names of Accounts on the specified Object having the indicated
WaterType.

Description

This function returns a list of names of Accounts on a specified Object
having the indicated WaterOwner, sorted in ascending Account priority
date order. Accounts which don’t have a priority date are at the end of the
list, sorted in ascending name order.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

2 STRING WaterOwner name or "NONE" or "ALL"

Evaluation

The set of Accounts on the Object are examined. The names of the
Accounts having the specified WaterOwner are added to the returned list.

If the WaterOwner argument is "NONE," then only Accounts having the
default (unassigned) WaterOwner are included in the returned list.

If the WaterOwner argument is "ALL," then that attribute is ignored. The
returned list will contain the names of ALL Accounts on the Object.

The list is sorted as described above.

Comments WaterOwners and priority dates are properties of Accounts.

Description

This function returns a list of names of Accounts on a specified Object
having the indicated WaterType, sorted in ascending Account priority date
order. Accounts which don’t have a priority date are at the end of the list,
sorted in ascending name order.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

5

RPL Predefined Functions
AccountNamesFromObjReleaseDestination and AccountNamesFromObjReleaseDestinationIntra

5

Syntax Example:

AccountNamesByWaterType (%"Heron Reservior", "SanJuan")

Return Example:

{"Account3","Account4"}

7. AccountNamesFromObjReleaseDestination and
AccountNamesFromObjReleaseDestinationIntra

This function evaluates to the list of names of Accounts on the specified Object having outflow
Supplies of the given ReleaseType and Destination.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

2 STRING WaterType name or "NONE" or "ALL"

Evaluation

The set of Accounts on the Object are examined. The names of the
Accounts having the specified WaterType are added to the returned list.

If the WaterType argument is "NONE," then only Accounts having the
default (unassigned) WaterType are included in the returned list.

If the WaterType argument is "ALL," then that attribute is ignored. The
returned list will contain the names of ALL Accounts on the Object.

The list is sorted as described above.

Comments WaterTypes and priority dates are properties of Accounts.

Description

This function returns a list of names of Accounts on a specified Object
where the attributes of the outflow Supplies of the Accounts match the
given ReleaseType and Destination. The list is sorted in ascending Account
priority date order; Accounts which don’t have a priority date are at the end
of the list, sorted in ascending name order.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

6

RPL Predefined Functions
AccountPriorityDate

6

Syntax Example:

AccountNamesFromObjReleaseDestination (%"Heron Reservior",
 "Account Fill", "Albiquiu")

Return Example:

{"DownstreamAcct1", "NaturalFlowAccount"}

8. AccountPriorityDate

This function evaluates to the priority date of the Account, on the specified Object, having the specified
name.

Evaluation

The set of Accounts on the Object are examined. The outflow Supplies on
those Accounts are then examined. The names of the Accounts which have
Supplies which

 (1) link a different downstream Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

are added to the returned list.

If the ReleaseType argument or the Destination argument is "NONE," then
only Supplies having the default (unassigned) attribute of that type are
considered.

If the ReleaseType argument or the Destination argument is "ALL," then
that Supply attribute is ignored.

The list is sorted as described above.

The “Intra” version of the function will only look at transfer supplies that are
within the object.

Comments ReleaseTypes and Destinations are properties of Supplies; priority dates
are properties of Accounts.

Description This function returns the priority date of the Account, on the specified
object, having the specified name.

Type DATETIME

Arguments Type Meaning

1 OBJECT The Object

2 STRING The Account name
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

7

RPL Predefined Functions
AnnualEventCount

7

Syntax Example:

AccountPriorityDate (%"Reservoir1", "NaturalFlowAcct")

Return Example:

@"February 23, 1902"

9. AnnualEventCount

This function analyzes a slot’s value over some number of years, counting the occurrence of certain
"events".

Evaluation
The Object’s accounts are examined.

If an Account exists with the specified name its priority date is returned.

Comments

Priority dates are a property of Accounts.

It’s an error if either the Object doesn’t have an Account with the specified
name or the Account doesn’t have a priority date.

Description Return the number of events which occurred on a slot in a given period.

Type NUMERIC

Arguments Type Meaning

1 SLOT a slot

2 DATETIME analysis period start date

3 DATETIME analysis period end date

4 DATETIME event period start date

5 DATETIME event period end date

6 NUMERIC value threshold

7 BOOLEAN value threshold is upper bound

8 NUMERIC event threshold

9 BOOLEAN event threshold is upper bound

Evaluation
See the on-line documentation for AnnualEventStats, which performs identical
computation, but returns more information. This function returns only the
number of events which occurred in the analysis period.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

8

RPL Predefined Functions
AnnualEventLastOccurrence

8

Syntax Example:

AnnualEventCount($ "Lottawatta Reservoir.Outflow", @"24:00:00 February 28,
1994", @"24:00:00 January 31, 2005", @"24:00:00 May 31", @"24:00:00 August 31",
100.0, TRUE, 2.0, TRUE)

Return Example:

102.0000

10. AnnualEventLastOccurrence

This function analyzes a slot’s value over some number of years, noting the last occurrence of a certain
type of event.

Description Return the number of event periods which occurred after the last event on a
slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT a slot

2 DATETIME analysis period start date

3 DATETIME analysis period end date

4 DATETIME event period start date

5 DATETIME event period end date

6 NUMERIC value threshold

7 BOOLEAN value threshold is upper bound

8 NUMERIC event threshold

9 BOOLEAN event threshold is upper bound

Evaluation

See the on-line documentation for AnnualEventStats, which performs identical
computation, but returns more information. This function returns only the
number of event periods which occurred after the last event. If no events
occurred, then this is the number of event periods.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

9

RPL Predefined Functions
AnnualEventStats

9

Syntax Example:

AnnualEventLastOccurrence($ "Lottawatta Reservoir.Outflow", @"24:00:00 February
28, 1994", @"24:00:00 January 31, 2005", @"24:00:00 May 31", @"24:00:00 August
31", 100.0, TRUE, 2.0, TRUE)

Return Example:

2.00000

11. AnnualEventStats

This function analyzes a slot’s value over some number of years, noting the occurrence of certain
"events".

Description Collects and returns statistics on annual events occurring on a slot.

Type LIST

Arguments Type Meaning

1 SLOT a slot

2 DATETIME analysis period start date

3 DATETIME analysis period end date

4 DATETIME event period start date

5 DATETIME event period end date

6 NUMERIC value threshold

7 BOOLEAN value threshold is upper bound

8 NUMERIC event threshold

9 BOOLEAN event threshold is upper bound
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

10

RPL Predefined Functions
AnnualEventStats

10
Evaluation

The analysis period start and end dates define the period during which the
analysis will be performed. Within the analysis period, only the timesteps which
occur on or between the day and month of the event period start and end dates
are considered. Each of these periods within the analysis period is called an
event period. At each event period, an event can either occur or not.

An event is defined by the value threshold and comparison type and the
subevent count threshold and comparison type. At each timestep within an
event analysis period, the slot’s value is compared to the threshold value. If the
value threshold is an upper bound and the slot’s value is greater than the value
threshold, then a subevent is said to have occurred at that timestep; similarly, if
the value comparison is a lower bound and the slot’s value is less than the
value threshold, then a subevent is said to have occurred. After the subevents
within an event analysis period have been noted, then they are counted up and
compared to the subevent count threshold. If the subevent count threshold is an
upper bound and the number of subevents which occurred in an event analysis
period is greater than the subevent count threshold, then an event is said to
have occurred, and similarly, if the subevent count comparison is a lower bound
and the number of subevents which occurred in an event analysis period is less
than the subevent count threshold, then an event is said to have occurred.

The return list contains the following items (listed in order):

• The total number of event periods.
• The number of events which occurred.
The number of event periods which occurred after the last event. If no events
occurred, then this is the number of event periods.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

11

RPL Predefined Functions
AnnualEventStats

11
Syntax Example:

AnnualEventStats($ "Lottawatta Reservoir.Outflow",
 @"24:00:00 February 28, 1994",
 @"24:00:00 January 31, 2005",
 @"24:00:00 May 31",
 @"24:00:00 August 31",
 100.0,
 TRUE,
 2.0,
 TRUE)
Note: this call will determine how often outflow from Lottawatta Reservoir
exceeded 100 cfs more than 2 times between May and August in an eleven year
period starting in 1994.

Return Example:

{11.00, 3.00, 2.00}

There were eleven event periods, In 3 of those, the flow exceeded 100cfs more than 2 times, and there
were 4 event periods (i.e the summers of 2001, 2002, 2003, and 2004) after the last event in 2001.

Comments

As defined above, the first and last event periods might be of shorter duration
than the other event periods. For example, if the analysis period is July 1, 1980
through June 30, 1989 and the event period is May 1 through September 30,
then the first event period will be July 1, 1980 through September 30, 1980;
subsequent event periods will be from May 1 through September 30, until the
last event period, which will be from May 1, 1989, through June 30, 1989.

If the event period contains the end of February, then event periods during
leap years will also have a different duration. It is an error for the start or end
date of the event period to be February 29, which does not exist in each year.

Event periods can span year boundaries. For example, if the event period begin
is December and the event period end is January, then each event period will
be from December of one year to January of the next.

One can leave the year field of the event period start or end date unspecified, if
one is using a format which contains that component, such as the month/day/
year format. E.g., one could specify the event start as @"6:00 May 1". The year
component of the event period start and end date is ignored whether or not it is
specified.

Any missing value in the slot’s series is treated as a non-subevent.

The comparison with the value threshold is done to within 0.01% of the
threshold’s value. That is, values which are within 0.01% of the threshold’s
value are considered to have exceeded the threshold.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

12

RPL Predefined Functions
AvgObjectsAggregatedOverTime

12
12. AvgObjectsAggregatedOverTime

This function returns a single numeric value obtained by averaging several objects’ aggregated slot
values. The objects’ slot values may be aggregated as a SUM, AVG, MIN, or MAX over a specified time
range.

Description Aggregates several objects’ values, each of which is the result of aggregating a
slot’s values over time.

Type NUMERIC

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start date

7 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW unit
type, the values are multiplied by their corresponding timestep length to convert
them to values of the unit type VOLUME.

Next, each slot’s values are aggregated according to the aggregation function
argument over the time range of the datetime arguments. During each of these
slot aggregations, any values which do not satisfy the aggregation filter
argument are ignored.

Finally, all of the object’s aggregated slot values are averaged.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values is
not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the "SUM"
aggregation function yields an aggregated value of 0.0 for that slot, while the
"AVG", "MIN", and "MAX" aggregation functions abort RiverWare with an error.

AggFunction obj() obj.slotname()[]t from start to end()∀[]obj in subbasin()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

13

RPL Predefined Functions
AvgObjectsAtEachTimestep

13
Syntax Example:

AvgObjectsAggregatedOverTime("upper basin",
 "Inflow",
 "MAX",
 "ALL",
 TRUE,
 @"October, Previous Year",
 @"September, Current Year")

Return Example:

52623.32 "cms"

13. AvgObjectsAtEachTimestep

This function evaluates to a list. Each item of the list is a list comprised of the datetime at which the
average was performed, and the value of the average.

Description Average several object’s slot values, for each timestep in a range.

Type LIST{LIST{DATETIME, NUMERIC}}

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start date

6 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time conversion
option argument is TRUE, and the values to be averaged are of the FLOW unit
type, the values are multiplied by their corresponding timestep length to
convert them to values of the unit type VOLUME.

Next, all of the object’s slot values are averaged, yielding one value for each
timestep in the time range of the datetime arguments. The function returns a
list of two items, where the first and second items of the inner lists are the
datetime and the average value, respectively.

Mathematical
Expression t obj.slotname[]obj in subbasin()∀{ , }[]t from start to end()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

14

RPL Predefined Functions
AvgTimestepsAggregatedOverObjects

14
Syntax Example:

AvgObjectsAtEachTimestep("upper basin", "Storage", "ALL", FALSE
@"October, Previous Year",
@"September, Current Year")

Return Example:
For a monthly model, the above function would return something like:

{ { 24:00 October 31, 1996, 1233232.2 "m3" },
 { 24:00 November 30, 1996, 1067478.3 "m3" },

 { 24:00 September 30, 1997, 1563456.7 "m3" } }

14. AvgTimestepsAggregatedOverObjects

This function evaluates to a single numeric value. This value is the average, over time, of values
resulting from aggregating several objects slot values at each timestep.

Comments

If the time conversion option argument is TRUE, but the unit of the slot values
is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare with
an error.

Description Aggregate over a timeseries of values, each of which is the result of
aggregating several objects’ slot values.

Type NUMERIC

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start datetime

7 DATETIME end datetime
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

15

RPL Predefined Functions
AvgTimestepsForEachObject

15
Syntax Example:

AvgTimeStepsAggregatedOverObjects ("upper basin",
 "Storage",
 "MAX",
 "ALL",
 FALSE,
 @"October, Previous Year",
 @"September, Current Year")

Return Example:

230000 "m3"

15. AvgTimestepsForEachObject

This function evaluates to a list. Each item of the list is a list comprised of the object name and the
average value of the slot on that object for the time range specified.

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW
unit type, the values are multiplied by their corresponding timestep length to
convert them to values of the unit type VOLUME.

Next, all of the objects’ slot values are aggregated according to the aggregation
function argument for each timestep in the time range of the datetime
arguments. During each of these slot aggregations, any values which do not
satisfy the aggregation filter argument are ignored.

Finally, the timeseries of object aggregated slot values are averaged.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values is
not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the "SUM"
aggregation function yields an aggregated value of 0.0 for that slot, while the
"AVG", "MIN", and "MAX" aggregation functions abort RiverWare with an error.

Description Average a slot’s values over a time range, for each object in a subbasin.

Type LIST {LIST {OBJECT, NUMERIC}}

Arguments Type Meaning

1 STRING Subbasin name

AggFunction t() obj.slotname()[]obj in subbasin()∀[]t from start to end()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

16

RPL Predefined Functions
Ceiling

16
Syntax Example:

AvgTimestepsForEachObject("upper basin", "Storage", "ALL", TRUE,
@"October, Previous Year",@"September, Current Year")

Return Example:
For a monthly model, the above function would return something like:

{ { %"Res1", 1233232.2 "m3" }, { %"Res2", 1067478.3 "m3" },
 { %"Res3", 1997, 1563456.7 "m3" } }

16. Ceiling

This function rounds a numeric value up to the nearest multiple of a numeric factor.

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start datetime

6 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. For each object, the
slot’s values are averaged over every timestep in the range of the datetime
arguments. Any values which do not satisfy the aggregation filter argument
are ignored during the calculation. If the time conversion option argument is
TRUE, and the values to be aggregated are of the FLOW unit type, the values
are first multiplied by their corresponding timestep length to convert them to
values of the unit type VOLUME.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values
is not FLOW, this function aborts the run with an error. If none of the values for
a slot satisfy the aggregation filter argument, this function also aborts
RiverWare with an error.

Description The ceiling numeric operation, to a multiple of a factor.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the value

2 NUMERIC the factor

obj obj.slotname[]t from start to end()∀{ , }[]obj in subbasin()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

17

RPL Predefined Functions
ColumnLabel

17
Syntax Example:

Ceiling("Dry Reservoir.Pool Elevation"[], 100.0 "ft")

Return Example:

400 "ft"

17. ColumnLabel

Syntax Example:

ColumnLabel(DataObjA.CoeffTable, 2)

Return Example:

"Coefficient 3"

Evaluation

Converts the value into the units of the factor, then returns the smallest integral
multiple of the factor which is not less than the converted value.

The returned value has the units of the factor.

Comments

Note that if the scalar portion of the factor is 1.0, then this function simply
returns the ceiling of the value expressed in the units of the factor.

If the two arguments are of a different unit type, this function aborts the run with
an error.

Description Returns the label associated with a given column of a table slot or aggregate
series slot.

Type STRING

Arguments Type Meaning

1 SLOT A table slot or agg series slot.

2 NUMERIC The column index (0-based).

Evaluation Returns the label of the column of the slot which has the given index.

Comments
It is an error to provide an illegal index (e.g., an index of 4 with a table which
has only 4 columns). If the column index is legal but there is no label for that
column, then the empty string is returned: "".
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

18

RPL Predefined Functions
ColumnLabels

18
18. ColumnLabels

Syntax Example:

ColumnLabels(DeepLake.Elevation Volume Table)

Return Example:

{“Pool Elevation”, “Storage”}

19. CompletePartialDate

Syntax Example:

CompletePartialDate(@"March", @"t")

Description Returns a list containing the labels of the columns of a given table slot or agg.
series slot, in order.

Type LIST of STRING values

Arguments Type Meaning

1 SLOT A table slot or agg. series slot

Evaluation Returns the label of the column of the table slot which has the given index.

Comments It is an error if the input slot has a type other than table slot or agg. series slot. For each
column, if no label exists the empty string is returned.

Description Fill in the missing components of a partially specified date/time.

Type DATETIME

Arguments Type Meaning

1 DATETIME a partially specified date/time.

2 DATETIME a source date/time, used to complete the other date.

Evaluation

Fills in the missing components of a partially specified date value. The
missing component values are taken from the second parameter, a date
value which, if not fully specified, should have at least the components
which are missing from the date which is being completed.

See the syntax examples below and see also related functions HERE
(PreviousDate) and HERE (NextDate).

Comments The behavior is not defined if the resulting date is not valid; for example,
if the day of month is not valid for the month and year.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

19

RPL Predefined Functions
CompletePartialDate

19
Return Example:

24:00 March 2, 1994

(assuming the @”t” is the 2nd day of some month in 1994)
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

20

RPL Predefined Functions
ComputeReservoirDiversions

20
20. ComputeReservoirDiversions

Description Used to meet multiple water user demands using multiple reservoir diversions

Type LIST{LIST {SLOT, NUMERIC, OBJECT}}

Arguments Type Meaning

1 STRING The computational subbasin used for the calculations

Evaluation

Returns a LIST of slot, value triplets. Each triplet is a LIST that contains a slot
(at index zero) and the value to set on that slot (at index one). The slot, value
triplets computed by this function are for the subslots on the Supply From
Reservoirs slot on each Water User object and the Incoming Available Water
slot on each Water User object.

For each Water User in the specified subbasin:

• A list of supply reservoirs is generated by following the links to the Supply
From Reservoirs slot

• The list of reservoirs is ranked by Operating Level in descending order.

• Each reservoir makes a diversion to meet the Water User’s Diversion
Requested value. This value is limited by: the Maximum Delivery Rate
specified on the Water User object that applies to the current reservoir, the
Max Diversion specified on the Diversion object that applies to the current
reservoir, and the amount of water remaining in the conservation pool.

• If the Limit by Reservoir Level method is selected (on the Water User
object) a diversion cannot be made if the Demand Reservoir is in the flood
pool or has a higher operating level than the supply reservoir.

• Each reservoir is visited until the Diversion Requested is met or there are
no reservoirs left to consider.

• The function returns each subslot on each Supply From Reservoirs slot
and the associated value. Also the Incoming Available Water slot on each
Water User is returned with the value to be set on that slot. The Incoming
Available Water is the sum of all the Supply From Reservoirs subslot values
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

21

RPL Predefined Functions
ComputeReservoirDiversions

21
Syntax Example:

ComputeReservoirDiversions("Diversion Basin") if Diversion Basin contains two
reservoirs and the WU1 and WU2 water users connected to those reservoirs.

Return Example:

{ {"WU1.Supply From Reservoirs.WU1_Divert__dot__Multi Outflow",
2.26534773 "cms", "WU1"},
{"WU1.Incoming Available Water", 2.26534773 "cms", "WU1"},
{"WU2.Supply From Reservoirs.WU2_Divert__dot__Multi Outflow",
0.67960432 "cms", "WU2"},
{"WU2.Incoming Available Water", 0.67960432 "cms", "WU2"} }

Use Examples:

FOR EACH (LIST result IN ComputeReservoirDiversions("Diversion Basin")) DO
 result<0> [] = result<1>
END FOR EACH

In the diagram below, the Diversion slot on each reservoir is linked to the Diversion slot on the
Diversion Object. The demands are represented by the Water User objects. The Supply From
Reservoirs slot on each Water User is linked to the Multi Outflow slot on each Diversion Object that
can act as a supply for that demand. The rule sets the values on the Supply From Reservoirs slots. These
propagate to the Multi Outflow slots on the connected Diversion Objects. The Diversion objects solve
for their Diversion slot. The Diversion values are passed to the Diversion slot on the Reservoir object
and the water is removed from the Reservoir. On each reservoir, the Conservation and Flood Pools
method in the Operating Levels category should be selected to instantiate the Bottom of Conservation
Pool slot.

Comments

The computational subbasin specified as the argument to this function must
contain all the objects relevant to these calculations (Water Users, Diversion
Objects, Reservoirs, etc.)

The computational subbasin must have a method selected in the Diversions
from Reservoirs category. Please consult the help file for the Computational
Subbasin object (under Simulation Objects) for more details on this method
category.

The use of this function requires a specific configuration of objects and method
selections. The schematic diagram below displays the required object and link
configurations.

Use of this function for USACE-SWD: HERE (USACE_SWD.pdf, Section 3.8).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

22

RPL Predefined Functions
DateMax

22
Schematic Diagram for ComputeReservoirDiversions Function:

21. DateMax

This function returns the later of two dates.

Description Compare two dates and return that which is chronologically greater.

Type DATETIME

Arguments Type Meaning

Supply From Reservoirs slot

Supply From Reservoirs slotMulti Outflow
Slot

Multi Outflow Slot
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

23

RPL Predefined Functions
DateMin

23
Syntax Example:

DateMax(@"t", @"January 1, 2001")

Return Example:

If current timestep is March 2, 2002: the function returns @"24:00 March 2, 2002"
If current timestep is May 3, 1999, the function returns @"24:00 January 1, 2001"

22. DateMin

This function returns the earlier of two dates.

Syntax Example:

DateMin(@"t", @"January 1, 2001")

Return Example:

If current timestep is May 2, 2002: the function returns @"24:00 January 1, 2001"
If current timestep is May 3, 1999, the function returns @"24:00 May 3, 1999"

1 DATETIME a date

2 DATETIME another date

Evaluation The two dates are resolved and compared, the one which is chronologically
greater is returned.

Comments

Description Compare two dates and return that which is chronologically lesser.

Type DATETIME

Arguments Type Meaning

1 DATETIME a date

2 DATETIME another date

Evaluation
The two dates are resolved and compared, the one which is chronologically
lesser is returned.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

24

RPL Predefined Functions
DatesInPeriod

24
23. DatesInPeriod

Syntax Example:

DatesInPeriod(TableA.AvePrecipitation, @"January 1, 2001")

Return Example:

If TableA.AvePrecipitation has 3 rows for 0:00 January 1, 6:00 June 15, and 24:00
September 1, Then the above function returns:
{ @"24:00 December 31, 2000", @"6:00 June 15, 2001", @"24:00 September 1, 2001"}

Description
Given a periodic slot and a date, this function returns an ordered list of dates
representing the beginning time of each interval which begins in the specific
period containing the input (reference) date.

Type LIST {DATETIME}

Arguments Type Meaning

1 SLOT a periodic slot

2 DATETIME a reference date

Evaluation

Every periodic slot has a period associated with it and this period is divided into
intervals. Intervals are either regular (e.g., Days) or irregular (e.g., the
beginning of one interval might be 8:00 July 3 of each period). One can map a
period (divided into intervals) onto a time line, leading to several specific
periods (divided into specific intervals). For example, the period "Year" maps
onto specific periods corresponding to each year, such as the specific period
which is the year 2003.

Providing a reference date serves to indicate a specific period, and this function
returns the dates corresponding to the beginning of each time interval which
begins in that specific period.

Comments

When the beginning of an interval occurs exactly at a period boundary (e.g., an
interval beginning at "0:00 January 1" with an Yearly period), then we consider
that interval to begin in the period occurring after midnight, not the one before.

Note that not all time intervals (rows) defined in a Periodic Slot will correspond
to intervals in a specific period. For example, for a period of Month, an interval
might be defined which begins at "12:00 Day 30". This interval does not exist in
all months and so for example if the reference date is 12:00 February 1, 2003,
then the list returned by this function would not include the date 12:00 February
30, 2003.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

25

RPL Predefined Functions
DateToNumber

25
24. DateToNumber

Syntax Example:

DateToNumber(@"t")

Return Example:

6508706400.00 - which is equivalent to "06:00 April 3, 2006" (FullDateTime)

Use Examples:

This function should be used in conjunction with dates on series slots HERE (Slots.pdf, Section 5) and
the NumberToDate function HERE (NumberToDate). A specific use example is shown HERE (Slots.pdf,
Section 5.3).

25. Destinations

This function evaluates to the list of user-defined Destinations

Description Given a Date/Time value, returns that date encoded as a numeric value of
the type used by slots to containing date/time values.

Type NUMERIC

Arguments Type Meaning

1 DATETIME The date/time value to encode as a numeric value.

Comments

Slots representing date/time values have unit type DateTime.

The date/time value need not be fully specified, but the return value should
only be assigned to a slot with appropriate units. For example, if the value
@"January 1" should only be assigned to a slot with units "MonthAndDay".

Description This function returns a list of the names of all Destinations defined in the
Water Accounting System Configuration.

Type LIST {STRING}

Arguments Type Meaning

Evaluation

Comments Destinations are properties of Supplies. The returned list does not include
the default ("NONE") Destination.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

26

RPL Predefined Functions
DestinationsFromObjectReleaseType

26
Syntax Example:

Destinations()

Return Example:

{"FarmerA", "City1", "City2"}

26. DestinationsFromObjectReleaseType

This function evaluates to the list of Destinations which represent outflows from an Object of a
specified Release Type.

Syntax Example:

DestinationsFromObjectReleaseType(%"Big Reservior", "Account Fill")

Return Example:

{"FarmerA", "City2"}

Description
This function returns a list of unique names of Destination Type of Supplies
which represent outflows from a specified Object, and which have the
indicated Release Type.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

2 STRING Release Type name or "NONE" or "ALL"

Evaluation

The set of Accounts on the Object are examined. The outflow Supplies on
those Accounts which link a different downstream Object and which have
the indicated Release Type are considered. The names of the Destination
Types of those Supplies are added to the returned list -- but any given
Destination Type name will appear on the list only once.

If the Release Type argument is "NONE," then only Supplies having the
default (unassigned) Release Type are considered.

If the Release Type argument is "ALL," then that attribute is ignored when
considering Supplies.

Comments

Destination Type and Release Types are properties of Supplies. The
returned list can include the default ("NONE") Destination Type. Supplies
which represent "internal flows" between two Accounts on the Object are
not considered.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

27

RPL Predefined Functions
DispatchCount

27
27. DispatchCount

Syntax Example:

DispatchCount()

Return Example:

12,345

28. DispatchEndDate

This function returns the last timestep in the model for which dispatching is allowed.

Description Returns the number of dispatch method executions that have occurred since
the beginning of the current run.

Type NUMERIC

Arguments None Meaning

Comments

Returns the number of dispatch method executions that have occurred since
the beginning of the current run, if called during a dispatching run (Simulation
or Rulebased Simulation). Otherwise, returns the total number of dispatch
executions in the previous dispatching run.

Description The last dispatch timestep.

Type DATETIME

Arguments Type Meaning

Evaluation

Returns the DATETIME that is the last timestep at which the current controller
allows dispatching. If this function is called from a context in which the current
controller does not have a last dispatch timestep (i.e. optimization), then the
end date of the run is returned.

Comments

The Number of Post-Run Dispatch Timesteps is set on the Run Control Parameters
dialog for Simulation or Rulebased Simulation. For more information on
changing the Number of Post-Run Dispatch Timesteps: HERE (RunControl.pdf,
Number of Post-Run Dispatch Timesteps:)
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

28

RPL Predefined Functions
DispatchTime

28
Syntax Example:

DispatchEndDate()

Return Example:

If the Run Finish is March 19, 2011 (daily timestep) and the Number of Post-Run Dispatch Timesteps is 3,
the function will return:
 24:00 March 22, 2011

29. DispatchTime

Syntax Example:

DispatchTime()

Return Example:

67.8 seconds

30. Div

This function computes the integer division of two numbers.

Description Returns the accumulated time spent executing dispatch methods since the
beginning of the current run.

Type NUMERIC

Arguments None Meaning

Comments

Returns the accumulated time spent executing dispatch methods since the
beginning of the current run, if called during a dispatching run (Simulation or
Rulebased Simulation). Otherwise, returns the total time spent executing
dispatch methods in the previous dispatching run

Description Integer division of two numbers.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the numerator

2 NUMERIC the units to which to convert the numerator

3 NUMERIC the denominator
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

29

RPL Predefined Functions
ElevationToArea

29
Syntax Example:

Div(10.5 "m", 0.0 "ft", 2.4 "sec", 0.0 "sec")

Return Example:

17.00 "0.304800 m/s"

31. ElevationToArea

These function performs a lookup in a Reservoir object’s Elevation Area Table based on a given
elevation and evaluates to the corresponding area.

4 NUMERIC the units to which to convert the denominator

Evaluation

Converts numerator and denominator into the specified units, then returns the
integral division of the converted values, where integral division of x and y is
defined as:

Comments

If the denominator is equal to zero, this function aborts the run with an error.
Each of the units arguments must have units which are compatible with the
value with which they are associated, otherwise the run is aborted with an
error.

Note that this function does not use the scalar portion of either of the units
arguments.

Description Find the surface area corresponding to a reservoir’s elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

Evaluation

The pool elevation argument is looked up in the Pool Elevation column, of the
Elevation Area Table, of the reservoir object argument, to determine the
Surface Area. If the exact elevation is not in the table, the lookup performs a
linear interpolation between the two nearest bounding elevations and their
corresponding surface areas.

Mathematical
Expression

Div x y,() x
y

---------≡

area area lesser()
area greater() area lesser()–

elev greater() elev lesser()–
--- elevation elev lesser()–()+=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

30

RPL Predefined Functions
ElevationToAreaAtDate

30
Syntax Example:

ElevationToArea(%"Lake Mead", 1210.03 "ft")

Return Example:

634547087.2 [m2]

32. ElevationToAreaAtDate

This function performs a lookup in the Reservoir object’s Elevation Area Table or Elevation Area Table
Time Varying based on a given elevation and datetime and evaluates to the corresponding surface area.
This function must be used when the “Time Varying Elevation Area” method is selected. Otherwise, the
ElevationToArea function can be used and no DATETIME argument is required.

Comments

If the object is not a reservoir, or the reservoir does not have an Elevation
Area Table, the function aborts the run with an error (CRSSEvaporationCalc,
DailyEvaporationCalc, PanAndIceEvaporation, or InputEvaporation must
be selected as the Evaporation and Precipitation Category selected
Method.

This function will issue an error if the “Time Varying Elevation Area” method,
HERE (Objects.pdf, Section 24.1.29.2), is selected. Instead, use the
ElevationToAreaAtDate function described next.

Description Find the surface area corresponding to a reservoir’s elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

3 DATETIME the datetime at which to do the conversion
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

31

RPL Predefined Functions
ElevationToMaxRegulatedSpill

31
Syntax Example:

ElevationToAreaAtDate(%"Lake Mead", 1210.03 "ft", @”t”)

Return Example:

634547087.2 [m2]

33. ElevationToMaxRegulatedSpill

This function performs a lookup in a Reservoir object’s Regulated Spill Table based on a given elevation
and evaluates to the corresponding maximum regulated spill.

Evaluation

On the specified reservoir object argument, if the “Time Varying Elevation
Area” method is selected, HERE (Objects.pdf, Section 24.1.29.2), the function
will reference the Elevation Area Table Time Varying table. The function will
select the appropriate column to use based on the datetime argument. On
timesteps that exactly match a modification date, the previous column is used.
The relationship changes only at the end of that timestep and is taken into
account when the reservoir dispatches. For this algorithm the previous
column relationship is used.

Otherwise, the Elevation Area Table is used and the datetime is ignored.

Then, the pool elevation argument is looked up in the Pool Elevation column
to determine the Surface Area from the appropriate Surface Area column. If
the exact elevation is not in the table, the lookup performs a linear
interpolation between the two nearest bounding elevations and their
corresponding surface areas.

Mathematical
Expression

Comments

If the object is not a reservoir, or the reservoir does not have an Elevation
Area Table or Elevation Area Table Time Varying, the function aborts the
run with an error (i.e. a method must be selected in the Evaporation and
Precipitation Category).

Description Find the maximum regulated spill at a given reservoir elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

3 DATETIME datetime context for unit conversions

area area lesser()
area greater() area lesser()–

elev greater() elev lesser()–
--- elevation elev lesser()–()+=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

32

RPL Predefined Functions
ElevationToStorage

32
Syntax Example:

ElevationToMaxRegulatedSpill(%"Lake Mead", 1210.03 "ft",
@"t")

Return Example:

1783.25 [cms]

34. ElevationToStorage

This function performs a lookup in a Reservoir object’s Elevation Volume Table based on a given
elevation and evaluates to the corresponding storage.

Evaluation

The pool elevation argument is looked up in the Pool Elevation column, of the
Regulated Spill Table, of the reservoir object argument, to determine the Max
Regulated Spill. If the exact elevation is not in the table, the lookup performs a
linear interpolation between the two nearest bounding elevations and their
corresponding maximum regulated spills.

Mathematical
Expression

Comments

If the object is not a reservoir, or the reservoir does not have a Regulated Spill
Table, the function aborts the run with an error (Regulated; Regulated and
Unregulated; Regulated and Bypass; Regulated, Bypass and Unregulated;
or Bypass, Regulated and Unregulated must be the Spill category selected
method).

Description Find the reservoir storage at a given elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

Evaluation

The pool elevation argument is looked up in the Pool Elevation column, of the
Elevation Volume Table, of the reservoir object argument to determine the
Storage. If the exact elevation is not in the table, the lookup performs a linear
interpolation between the two nearest bounding elevations and their
corresponding storage values.

Mathematical
Expression

max spill max spill lesser() +=

max spill greater() max spill lesser()–

elev greater() elev lesser()–
-- elevation elev lesser()–()

storage storage lesser() +=

storage greater() storage lesser()–

elev greater() elev lesser()–
-- elevation elev lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

33

RPL Predefined Functions
ElevationToStorageAtDate

33
Syntax Example:

ElevationToStorage(%"Lake Mead", 1210.03 "ft")

Return Example:

2212323.233 "m3"

35. ElevationToStorageAtDate

This function performs a lookup in the Reservoir object’s Elevation Volume Table or Elevation Volume
Table Time Varying based on a given elevation and datetime and evaluates to the corresponding volume.
This function must be used when the “Time Varying Elevation Volume” method is selected. Otherwise,
the ElevationToStorage function can be used and no DATETIME argument is required.

Comments

If the object is not a reservoir, the function aborts the run with an error.

If the reservoir is a Slope Power Reservoir, the calculation is based only on
level storage and does not include any wedge storage effects.

This function will issue an error if the “Time Varying Elevation Volume” method,
HERE (Objects.pdf, Section 24.1.29.2), is selected. Instead, use the
ElevationToStorageAtDate function described next.

Description Find the volume corresponding to a reservoir’s elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

3 DATETIME the datetime at which to do the conversion
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

34

RPL Predefined Functions
ElevationToUnregulatedSpill

34
Syntax Example:

ElevationToStorageAtDate(%"Lake Mead", 1210.03 "ft", @”t”)

Return Example:

634547087.2 [m3]

36. ElevationToUnregulatedSpill

This function performs a lookup in a Reservoir object’s Unregulated Spill Table based on a given
elevation and evaluates to the corresponding unregulated spill.

Evaluation

On the specified reservoir object argument, if the “Time Varying Elevation
Volume” method is selected, HERE (Objects.pdf, Section 24.1.28.3), the
function will reference the Elevation Volume Table Time Varying table. The
function will select the appropriate column to use based on the datetime
argument. On timesteps that exactly match a modification date, the previous
column is used. The relationship changes at the end of that timestep and is
taken into account when the reservoir dispatches. For this algorithm, the
previous column relationship is used.

Otherwise, the Elevation Volume Table is used and the datetime is ignored.

Then, the pool elevation argument is looked up in the Pool Elevation column
to determine the Volume from the appropriate column. If the exact elevation is
not in the table, the lookup performs a linear interpolation between the two
nearest bounding elevations and their corresponding surface areas.

Mathematical
Expression

Comments
If the object is not a reservoir, or the reservoir does not have an Elevation
Volume Table or Elevation Volume Table Time Varying, the function aborts
the run with an error.

Description Find the unregulated spill at a given reservoir elevation.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC pool elevation

3 DATETIME datetime context for unit conversions

storage storage lesser() +=

storage greater() storage lesser()–

elev greater() elev lesser()–
-- elevation elev lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

35

RPL Predefined Functions
Exp

35
Syntax Example:

ElevationToUnregulatedSpill(%"Lake Mead", 1210.03 "ft",
@"t")

Return Example:

1212.25 [cms]

37. Exp

Syntax Example:

Exp(16.0, 0.5)

Evaluation

The pool elevation argument is looked up in the Pool Elevation column, of the
Unregulated Spill Table, of the reservoir object argument, to determine the
Unregulated Spill. If the exact elevation is not in the table, the lookup performs a
linear interpolation between the two nearest bounding elevations and their
corresponding unregulated spills.

Mathematical
Expression

Comments

If the object is not a reservoir, or the reservoir does not have an Unregulated
Spill Table, the function aborts the run with an error (Unregulated; Regulated
and Unregulated; Regulated, Bypass and Unregulated; or Bypass, Regulated
and Unregulated must be the Spill selected method).

Description Exponentiation of a dimensionless quantity.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the operand

2 NUMERIC the exponent

Evaluation Returns the result of exponentiating the operand to the power given by the
exponent. The return value is dimensionless (has no units).

Comments The exponent is not restricted to being an integer (as with the "^" operator), but
it is an error for the operand to have units.

unreg spill unreg spill lesser() +=

unreg spill greater() unreg spill lesser()–

elev greater() elev lesser()–
--- ×

elevation elev lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

36

RPL Predefined Functions
FilterByObjType

36
Use Examples:

4.0000 "None"

38. FilterByObjType

This function evaluates to a list of objects containing objects from the original list which match the
specified types.

Syntax Example:

FilterByObjType({%"Lake Mead",%"Lake Powell",%"Virgin River"},
 {"LevelPowerReservoir"})

Syntax Example:

{%"Lake Mead",%"Lake Powell"}

Description Filter a list of objects to include only object(s) of the specified type(s).

Type LIST {OBJECT}

Arguments Type Meaning

1 LIST list of objects

2 LIST
list of object types to include, where each object type is
expressed as a STRING.

Evaluation

The list of object types to include is parsed and mapped to RiverWare object
types. Then, the list of objects is evaluated in order, and each object which is
one of the requested object types is added to the returned list.The spellings and
capitalization of objects can be found in the Subbasin Manager under the
Automatic tab.

Mathematical
Expression

Comments
The order of objects is preserved from the argument object list to the returned
object list. The list arguments may contain any number of items. If either of the
arguments is an empty list, the function evaluates to an empty list.

OBJECT{ } OBJECT{ } OBJECT TYPE{ }∩=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

37

RPL Predefined Functions
FlattenList

37
39. FlattenList

Syntax Example:

FlattenList({1, {2, 3}, {{4}}})

Return Example:

{ 1, 2, 3, 4}

40. FloodControl

This function invokes the selected Flood Control method on a computational subbasin HERE
(Objects.pdf, Section 7.1.3).

Description This function takes a list and replaces any lists contained within that list with the
individual items from those lists.

Type NUMERIC

Arguments Type Meaning

1 LIST the list to be "flattened"

Evaluation
For each item in the input list, if the item is not a list, it is appended to the
answer list, if it is a list, then it is flattened and then all of its items are appended
to the answer list in turn.

Comments

Description Invokes computational subbasin’s selected Flood Control method.

Type LIST { LIST { SLOT, NUMERIC, OBJECT } }

Arguments Type Meaning

1 STRING the name of the computational subbasin

Evaluation

Runs the selected Flood Control method on the subbasin. Returns a list of {
slot, value, object } sets. For each reservoir in the subbasin, three sets may be
returned: one for the Outflow slot, one for the Flood Control Release slot on the
reservoir, and one for the Target Balance Level on the reservoir.

Comments

The calling rule is expected to make the assignments of the values to the slots.
Typically, this function should be called only once per timestep. To constrain
this, use the following as an execution constraint:
NOT(HasRuleFiredSucessfully("Rule Name"))

Use of this function for USACE-SWD: HERE (USACE_SWD.pdf, Section 3.7).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

38

RPL Predefined Functions
Floor

38
Syntax Example:

FloodControl("Flood Basin") where "Flood Basin" contains Res1 and Res2.

Return Example:

{ {"Res1.Outflow", 6344.32 "cfs", "Res1"},
 {"Res1.Flood Control Release", 6344.32 "cfs", "res1"},
 {"Res1.Target Balance Level", 8.32, "res1"} ,
 {"Res2.Outflow", 3243.02 "cfs", "Res2"},
 {"Res2.Flood Control Release", 2312.20 "cfs", "Res2"},
 {"Res2.Target Balance Level", 8.32, "Res2"} }

Use Examples:

FOREACH (LIST triplet IN FloodControl("Flood Basin")) DO
 (triplet<0>)[] = triplet<1>
ENDFOREACH

41. Floor

This function rounds a numeric value down to the nearest multiple of a numeric factor.

Description The floor numeric operation, to a multiple of a factor.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the value

2 NUMERIC the factor

Evaluation

Converts the value into the units of the factor, then returns the largest integral
multiple of the factor which is not greater than the converted value.

The returned value has the units of the factor.

Comments

Note that if the scalar portion of the factor is 1.0, then this function simply
returns the floor of the value expressed in the units of the factor.

If the two arguments are of a different unit type, this function aborts the run with
an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

39

RPL Predefined Functions
FlowToVolume

39
Syntax Example:

Floor("Wet Reservoir.Pool Elevation"[], 100.0 "ft")

Return Example:

If Wet Reservoir.Pool Elevation[] is 5343.35ft, then the above example will
evaluate to 5300.0 ft

42. FlowToVolume

This function evaluates to the volume of water corresponding to a flow over a timestep.

Syntax Example:

FlowToVolume(Lake Powell.Inflow[], @"t")

Return Example:

6155584.04 [m3]

43. Fraction

This function returns the fractional remainder after dividing two numbers.

Description The volume of water resulting from a steady flow over a timestep.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC constant flow to be converted

2 DATETIME timestep over which to convert

Evaluation
The number of seconds in the timestep of the datetime argument is
determined. Then, the flow argument is multiplied by this number of seconds.
Returns value in units of volume.

Mathematical
Expression

Comments
If the flow argument is entered in units containing a "/month" component, it is
scaled to reflect the length of the month indicated by the timestep argument
before being multiplied by this timestep length.

Description The fractional remainder after division.

Type NUMERIC

volume flow t current timestep()Δ×=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

40

RPL Predefined Functions
Fraction

40
Syntax Example:

Fraction("Whitewater Creek.Inflow"[], 1.0 "cms")

Return Example:

If Whitewater Creek.Inflow is 134.3 cfs, the above function returns:
0.80295250 "cms"

Arguments Type Meaning

1 NUMERIC the numerator

2 NUMERIC the denominator

Evaluation

Converts the numerator into the units of the denominator, divides the result by
the denominator, then returns the fractional portion of the division. In other
words:

The returned value has the units of "factor".

Comments

Note that if the scalar portion of the denominator is 1.0, then this function simply
returns the fractional portion of the first argument when it is expressed in the
units of the denominator.

If the values are of a different unit type, this function aborts the run with an error.

Fraction x f,() x
f
-- Floor x f,()–≡
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

41

RPL Predefined Functions
Get3DTableVals

41
44. Get3DTableVals

Syntax Example:

Get3DTableVals(Wet Reservoir.Plant Power Table, 0, 1, 2)

Return Example:

{{320.00 "m", {0.00 "cms", 120.32 "cms"}, {0 "HP", 470 "HP"}},
 {340.00 "m", {5.00 "cms", 127.32 "cms"}, {10 "HP", 500 "HP"}}}

Description Return the contents of a Table Slot that is structured for 3D table interpolation.

Type LIST{LIST {NUMERIC LIST{NUMERIC} LIST{NUMERIC}}}

Arguments Type Meaning

1 SLOT the table slot whose values are to be returned.

2 NUMERIC z column index (zero-based)

3 NUMERIC x column index (zero-based)

4 NUMERIC y column index (zero-based)

Evaluation

Returns the contents of a 3D table as a list of the table values associated with
successive z value. For each distinct z value in the table slot, the returned list
contains a sublist with the following values:
1) The current z value
2) The list of x values associated with the current z value
3) The list of y values associated with the current z value

Comments

Units are not required for row and column indices and, if provided, will be
ignored.

In the context of rulebased simulation, if one of the slot’s values is NaN, the
function exits the rule with an early termination.

Operating
Head (m)

Turbine
Release
(cms)

Power
(HP)

320 0.00 0

320 120.32 470

340 5.00 10

340 127.32 500
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

42

RPL Predefined Functions
Get3DTableValsSkipNaN

42
45. Get3DTableValsSkipNaN

Syntax Example:

Get3DTableVals(Wet Reservoir.Plant Power Table, 0, 1, 2)

Return Example:

{{320.00 "m", {0.00 "cms", 120.32 "cms"}, {0 "HP", 470 "HP"}},
 {340.00 "m", {5.00 "cms", 127.32 "cms"}, {10 "HP", 500 "HP"}}}

Description Return the contents of a Table Slot that is structured for 3D table interpolation.

Type LIST{LIST {NUMERIC LIST{NUMERIC} LIST{NUMERIC}}}

Arguments Type Meaning

1 SLOT the table slot whose values are to be returned.

2 NUMERIC z column index (zero-based)

3 NUMERIC x column index (zero-based)

4 NUMERIC y column index (zero-based)

Evaluation

Returns the contents of a 3D table as a list of the table values associated with
successive z value. For each distinct z value in the table slot, the returned list
contains a sublist with the following values:
1) The current z value
2) The list of x values associated with the current z value
3) The list of y values associated with the current z value

Comments

Units are not required for row and column indices and, if provided, will be
ignored.

In the context of rulebased simulation, if one of the slot’s values is NaN, all
values in that row and rows below it are ignored.

Operating
Head (m)

Turbine
Release
(cms)

Power
(HP)

320 0.00 0

320 120.32 470

340 5.00 10

340 127.32 500

NaN NaN NaN
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

43

RPL Predefined Functions
GetAccountFromSlot

43
46. GetAccountFromSlot

Syntax Example:

GetAccountFromSlot($"ResA^Municipal.Inflow")

Return Example:

"Municipal"

47. GetAllNamedBasins

This function evaluates to a list containing the names of the user defined subbasins in a model.

Syntax Example:

GetAllNamedBasins()

Return Example:

{"Upper", "Flood Control", "Lower"}

Description Return the name of a slot’s account.

Type STRING

Arguments Meaning

1 SLOT The slot whose account is returned.

Comments It is an error if the slot is not on an account.

Description The names of all user defined subbasins in the current model, expressed as
strings.

Type LIST {STRING}

Arguments none Meaning

Evaluation The function first retrieves a list of all defined subbasins in the model, then filters
out any automatic subbasins (object type basins generated by RiverWare).

Comments If there are no user defined subbasins in the model, this function evaluates to an
empty list.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

44

RPL Predefined Functions
GetColMapVal

44
48. GetColMapVal

Syntax Example:

GetColMapVal(Meander Res.Operating Level Table, @"t", 1.0)

Return Example:

2.323

Description

Get a column map value from a periodic slot given a date and a value. This is the
inverse of the way values are usually accessed in periodic slots with column
maps (i.e., given a date and column map value, find the corresponding slot
value).

Type NUMERIC

Arguments Type Meaning

1 SLOT The periodic slot to be accessed.

2 DATETIME
The date to be used to index into the time dimension of the
Periodic Slot (its row map).

3 NUMERIC
The value to use for the lookup, having the same type of units
as the values in the periodic slot itself.

Evaluation

If the default access method for the table is "lookup", then we first find the row
whose associated time interval contains the input date. We then find the two
consecutive values in that row whose values bracket the input value. We then find
the column map values associated with these two values, and return a value
interpolated between them according to where the input value falls between its
two bracketing values.

If the default access method is "interpolation" then the procedure described
above is followed for the row whose time interval follows the given date, and the
return value is interpolated between the values found for the two rows.

Comments

The input slot must be a periodic slot with a column map, the numeric value must
have units compatible with the units of the periodic slot, for the relevant time
interval(s), the slot values must be either a monotonically non-decreasing or
monotonically non-increasing function of the column map values, and the input
value must fall within the domain of that function. If there are multiple possible
return values, i.e., if the input value appears for multiple columns, then the largest
column map value is returned.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

45

RPL Predefined Functions
GetColumnIndex

45
49. GetColumnIndex

Syntax Example:

GetColumnIndex(RiverData.Minimum Flow,"Dolores")

Return Example:

0.000

Description The index of the table slot or agg. series slot column whose name matches a
string.

Type NUMERIC

Arguments Type Meaning

1 SLOT the table slot or agg. series slot in which to find a column

2 STRING the name of the column to match

Evaluation The labels of the slot columns are compared to the string argument until a match
is found.

Comments

Slot column and row indices are zero based and have units of type [NONE]. If the
specified slot is not a table slot or agg. series slot, or the specified string is not the
label of a column on the slot, this function aborts the run with an error. If several
columns of the slot match the string argument, this function evaluates to the index
of the left-most matching column.

The matching process treats sequences of white space characters as a blank; for
example, the input string “ ab c “ will match a column with the label “ab c.” This
allows the method to match labels that are displayed on multiple lines because
they contain a carriage return character.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

46

RPL Predefined Functions
GetDate

46
50. GetDate

Syntax Example:

GetDate("January 20, 1996")

Return Example:

@"24:00 January 20, 1996"

51. GetDates

This function evaluates to a list of datetimes; from a start datetime to an end datetime, with a given
interval separating the dates.

Description Interpret a string as a date.

Type DATETIME

Arguments Type Meaning

1 STRING Textual representation of a date/time.

Evaluation

Returns the date which corresponds to the input text. Legal text is the same as
is legal for symbolic date/times. For example, the expression:

 GetDate("January 1, Current Year")

is exactly equivalent to the expression:

 @"January 1, Current Year".

Description Generate a list of datetimes between two datetimes at a given interval.

Type LIST {DATETIME}

Arguments Type Meaning

1 DATETIME starting datetime

2 DATETIME ending datetime

3 STRING
string representation of a datetime interval expressed as
an integer, a space, and a time unit.

Evaluation

The starting datetime and ending datetime; which may be specified
symbolically, are converted into actual datetimes. The string representation of
the interval is resolved into a time length. Then, a list is created beginning
with the starting datetime. The time length is added to each previous datetime
in the list until the resulting datetime is later than the ending datetime.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

47

RPL Predefined Functions
GetDatesCentered

47
Syntax Example:

GetDates(@"January 20, 1996", @"January Max DayOfMonth, 1996",
"6 Hours"}

Return Example:

{@"24:00 January 20, 1996", @"06:00 January 21, 1996", @"12:00 January 21, 1996",
...}

52. GetDatesCentered

This function evaluates to a list of datetimes, centered around a given date.

Mathematical
Expression

Comments

If the ending date is before the starting date, the function evaluates to an
empty list. If the ending date is equal to the starting date, or if the time interval
is larger than the interval between the starting and ending dates, the function
evaluates to a list which only contains the start date.

The accepted datetime interval units are:
• hours or Hours
• days or Days
• weeks or Weeks
• months or Months
• years or Years

Description
Generate a list of datetimes separated by a given interval, and centered at a
given date. If desired, dates not within the run duration are filtered out of the
list.

Type LIST {DATETIME}

Arguments Type Meaning

1 DATETIME center datetime

2 NUMERIC number of dates to return in the list

3 STRING
string representation of a datetime interval expressed as
an integer, a space, and a time unit

3 BOOLEAN whether to limit return dates to those within the run

DATETIME{ } start end≤ datetime n 1–() interval+() end≤ ..., ,{ }=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

48

RPL Predefined Functions
GetDayOfMonth

48
Syntax Example:

GetDatesCentered(@"January 20, 1996", 3, "6 Hours", true}

Return Example:

{@"18:00 January 20, 1996", @"24:00 January 20, 1996", @"06:00 January 21, 1996"}

53. GetDayOfMonth

This function evaluates to a number which represents the day of the month of the given datetime in
units of time

Evaluation

The center datetime, which may be specified symbolically, is converted into an
actual datetime. The string representation of the interval is resolved into a
time length. Then a list is created with the given number of dates, each
separated by the given time interval. The center date is always included in this
list, with an equal number of dates appearing before and after it (in the case of
an odd number of dates). If their are an even number of dates, then there is
one more date appearing before the center date than appear after. After the
list has been created, if the user has specified that they only want dates within
the run duration, then all other dates are filtered out of the return list.

Mathematical
Expression

Comments

The accepted datetime interval units are:

• hours or Hours
• days or Days
• weeks or Weeks
• months or Months
• years or Years

Description The day of the month as a unit of time.

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime whose day of month to determine

Evaluation

The datetime argument; which may be specified symbolically, is converted into an
actual datetime. Then, the day of the month in which the datetime is, is
determined. This function requires that the datetime be at least partially specified
with a valid month and day, E.g. @"January 1" or @"Current Month 23" will work.

DATETIME{ } d n
2
---– offset+ d n

2
--- 1– 

 – offset+ … d n
2
--- offset+, , ,

 
 
 

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

49

RPL Predefined Functions
GetDayOfYear

49
Syntax Example:

GetDayOfMonth(@"February 23, 1996")

Return Example:

23.0 “day” or 553 “hour”

54. GetDayOfYear

This function evaluates to a number which represents the day of the year of the given datetime.

Comments

When displayed, the return value will be displayed according to the active unit
scheme’s time unit type rule. For example, if the active unit scheme displays Time
values as Hours, then the return value for @”January 2” will be displayed as 48
“hours”.

To convert the return value into a dimensionless value representing the number of
days, divide it by 1 “day”.

As elsewhere in RiverWare 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.

Description The day of the year as a one-based integer in units of time.

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime whose day of the year to determine

Evaluation

The datetime argument; which may be specified symbolically, is converted into an
actual datetime. Then, the day of the year in which the datetime is contained, is
determined.

This function requires that the specified datetime resolve to a fully specified
datetime or an error will occur.

Comments

When displayed, the return value will be displayed according to the active unit
scheme’s time unit type rule. For example, if the active unit scheme displays Time
values as Hours, then the return value for @”January 2” will be displayed as 48
“hours”.

To convert the return value into a dimensionless value representing the number of
days, divide it by 1 “day”.

As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

50

RPL Predefined Functions
GetDaysInMonth

50
Syntax Example:

GetDayOfYear(@"February 23, 1996")

Return Example:

54.0 “day” or 1296 “hour”

55. GetDaysInMonth

This function evaluates to the number of days in the month of the given datetime.

Syntax Example:

GetDaysInMonth(@"February 23, 1996")

Return Example:

29.0 “day” or 696 “hour”

Description The number of days in the month in units of time.

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime of any time within the month

Evaluation

The datetime argument; which may be specified symbolically, is converted into an
actual datetime. Then, the number of days in the month in which the datetime is
contained, is determined. This function requires that the specified datetime
resolve to a fully specified datetime or an error will occur.

Comments

When displayed, the return value will be displayed according to the active unit
scheme’s time unit type rule. For example, if the active unit scheme displays Time
values as Hours, then the return value for @”January 2” will be displayed as 744
“hours”.

To convert the return value into a dimensionless value representing the number
of days, divide it by 1 “day”.

As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

51

RPL Predefined Functions
GetDisplayVal

51
56. GetDisplayVal

Syntax Example:

GetDisplayVal(MyReservoir.Outflow, @"24:00 February 23, 1996")

Return Example:

3.03012926 "1000 * cfs"

Description
This function takes a series or periodic slot and a date and returns the value of
the slot at the given date, in units based on the display scale and units for that
slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT the series or periodic slot whose value is to be returned

2 DATETIME the datetime of the value to be returned

Evaluation

Comments
The function returns and error and aborts the run if the input slot is not a series or
periodic slot, if the date is not fully specified, or if the date is not contained in the
series.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

52

RPL Predefined Functions
GetDisplayValByCol

52
57. GetDisplayValByCol

Syntax Example:

GetDisplayValByCol(MyData.Flow, @"February 23, 1996", 1.0)

Return Example:

3.03012926 "1000*cfs"

58. GetElementName

Given an element in an aggregate object, this function returns its name.

Description
This function takes an agg series slot or periodic slot, a date, and a column, and
returns the value of the slot in the given column and at the given date, in units
based on the display scale and units for that slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT the series or periodic slot whose value is to be returned

2 DATETIME the datetime of the value to be returned

3 NUMERIC the column, interpreted as a 0-based integral index

Evaluation
The function returns and error and aborts the run if the input slot is not of an
appropriate type, if the date is not fully specified, or if the date is not contained in
the series.

Description Return the name of an element in an aggregate object, without the name of
the object’s name prepended.

Type STRING

Arguments Type Meaning

1 OBJECT
the element of an aggregate object (e.g., a WaterUser
within an AggDiversionSite) whose name is to be
returned.

Evaluation The function returns the name of the element object.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

53

RPL Predefined Functions
GetEnsembleTraceValue

53
Syntax Example:

GetElementname(% "Below Abiquiu Diversions:Chamita")

Return Example:

"Chamita"

59. GetEnsembleTraceValue

Given a keyword name for trace metadata when using an ensemble, return the keyword value for the
current trace executing in a run.

Syntax Example:

GetEnsembleTraceValue("Hydrology")

Return Example:

"Dry"

Comments

This function returns only the name of the element itself, without the name of
the parent aggregate object. If the full name is desired, then one may use the
built-in RPL operation STRINGIFY.

If the object argument is not an element of an aggregate object, then the run
is aborted with an error.

Description Return the value for a trace keyword for the current trace executing in a run.

Type STRING

Arguments Type Meaning

1 STRING the name of a trace metadata keyword.

Evaluation
The function returns the value for the trace keyword for the currently executing
run.

Comments

If the function is called outside of a run or if the trace metadata keyword
cannot be found, then the function fails.

This function would typically be called during a multiple run when input
ensembles are used in the MRM configuration. If a single trace is configured
for an ensemble dataset to use outside of a multiple run and a DMI with this
dataset is invoked during a single run, the metadata for that trace would also
be available to query.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

54

RPL Predefined Functions
GetEnsembleValue

54
60. GetEnsembleValue

Given a keyword name for ensemble metadata when using an ensemble, return the keyword value for
the metadata for that run.

Syntax Example:

GetEnsembleValue("Hydrology")

Return Example:

"Historical"

61. GetJulianDate

This function evaluates to the Julian date of the given datetime.

Description Return the value for an ensemble keyword for the current run.

Type STRING

Arguments Type Meaning

1 STRING the name of an ensemble metadata keyword.

Evaluation
The function returns the value for the ensemble keyword for the currently
executing run.

Comments

If the function is called outside of a run or if the ensemble metadata keyword
cannot be found, then the function fails.

This function would typically be called during a multiple run when input
ensembles are used in the MRM configuration. If a single trace is configured
for an ensemble dataset to use outside of a multiple run and a DMI with this
dataset is invoked during a single run, the metadata for that ensemble would
also be available to query.

Description The Julian date of the timestep in units of "NONE".

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime whose Julian date to evaluate to
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

55

RPL Predefined Functions
GetLinkedObjs

55
Syntax Example:

GetJulianDate(@"14:31:59 February 23, 1996")

Return Example:

2450137.10554398

62. GetLinkedObjs

Syntax Example:

GetLinkedObjs("Res A.Inflow")

Return Example:

{%"Reach 1", %"Reach 2"}

Evaluation

The datetime argument; which may be specified symbolically, is converted into
an actual datetime. Then, the Julian date of this timestep is determined.

This function requires that the specified datetime resolve to a fully specified
datetime or an error will occur.

Comments

Julian Dates are represented as the number of days from noon GMT on
January 1, 4713 B.C. (47120101 12:00 P.M. GMT). Julian Dates in RiverWare
also include the decimal fraction of the day down to 0.00001, the equivalent of 1
second.

Description Given a slot, returns a list of the Objects which contain the slots to which the
input slot is linked.

Type LIST {OBJECT}

Arguments Type Meaning

1 SLOT the slots whose links are to be explored

Evaluation
For each slot to which the input slot is linked, we determine if that slot is
managed by a Objects; if so, it is added to the return list. Thus, an empty list is
returned if the slot is not linked to any slots on a Objects.

Comments It is considered an error if the input slot is not a Series Slot.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

56

RPL Predefined Functions
GetLowerBound

56
63. GetLowerBound

Syntax Example:

GetLowerBound(“Res A.Power”)

Return Example:

0.0 MW

64. GetLowerBoundByCol

Syntax Example:

GetLowerBoundByCol("Res A.Hydro Block Use", 3)

Return Example:

0.0 MWH

Description Returns the lower bound for the specified series slot

Type NUMERIC

Arguments Type Meaning

1 SLOT the slot whose bound is to be returned.

Evaluation

Comments It is considered an error if the specified slot is not a Series Slot with a valid lower
bound. The lower bound is specified in the slot configuration.

Description Returns the lower bound for the column of the specified agg series slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT the agg series slot whose bound is to be returned.

2 NUMERIC the column index (0-based).

Evaluation

Comments
It is considered an error if the input slot is not an Agg Series Slot with a valid
lower bound for the given column. The lower bound is specified in the slot
configuration.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

57

RPL Predefined Functions
GetMaxOutflowGivenHW

57
65. GetMaxOutflowGivenHW

This function evaluates to the maximum Outflow from a StorageReservoir, LevelPowerReservoir, or
SlopePowerReservoir with the given Pool Elevation at the specified timestep.

Description
The maximum combined outflow of a reservoir, including outlet works or turbine
release, and any possible regulated, unregulated, and/or bypass spills.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the end of timestep pool elevation

3 DATETIME the timestep at which to calculate

Evaluation

The ending pool elevation from argument 2 is averaged with the previous
timestep’s ending Pool Elevation to yield an average pool elevation over the
timestep. The average pool elevation is then used to compute the following
outflows:

• Release (if the object is a StorageReservoir): The maximum release is
determined from a table interpolation in the Max Release table using the
average pool elevation as the lookup in the Pool Elevation column.

• Turbine Release (if the object is a LevelPowerReservoir or
SlopePowerReservoir): The maximum turbine release is determined based
on the selected Power method. This calculation is iterative, since the
maximum outflow impacts the reservoir tailwater elevation and operating
head, which affect the maximum turbine release. The selected Tailwater
method is used to determine the tailwater elevation.

• No Power Turbine Flow: The turbine release is determined from a table
interpolation in the Max Flow Through Turbines table using the average pool
elevation as the lookup in the Reservoir Elevation column.

• Plant Power Coefficient: The turbine release is determined from a table
interpolation in the Max Turbine Q table using the operating head as the
lookup in the Operating Head column. If the average pool elevation is less
than the Minimum Power Elevation, the turbine release is zero.

• Plant Efficiency Curve: The turbine release is determined from a table
interpolation in the Auto Max Turbine Q table using the operating head as
the lookup in the Operating Head column. If the average pool elevation is
less than the Minimum Power Elevation, the turbine release is zero.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

58

RPL Predefined Functions
GetMaxOutflowGivenHW

58
Evaluation
cont.

• Unit Generator Power: The turbine release is the sum of the maximum
releases for each available turbine, as specified in the Generators Available
and Limit table. Each turbine’s maximum release is determined from a table
interpolation in the Full Generator Flow table using the operating head as
the lookup in the appropriate unit type’s Head for Type n column. If the
average pool elevation is less than the Minimum Power Elevation, the
turbine release is zero.

• Peak Power Equation with Off Peak Spill: The turbine release is the peak
release over the entire timestep. This is calculated by iterating the selected
Tailwater method and operating head calculation with a table interpolation
in the Operating Head vs. Generator Capacity table.

• Peak Power and Peak and Base: The turbine release is the peak flow over
the entire timestep. This is calculated by iterating the selected Tailwater
method and operating head calculation with a table interpolation in the
Best Generator Flow table using the operating head as the lookup in the
Head for Type 1 column.

• LCRPowerCalc: Because this power method has no turbine release limit, a
maximum outflow cannot be calculated. RiverWare issues an error message
and aborts the execution of this rule.

• Unregulated Spill (if an Unregulated Spill method is selected on the object):
The maximum unregulated spill is determined from a table interpolation in
the Unregulated Spill Table using the average pool elevation as the Pool
Elevation.

• Regulated Spill (if a Regulated Spill method is selected on the object): If the
Regulated Spill slot is specified by the user (I, Z or R flag), the specified
value is used as the maximum regulated spill. Otherwise the maximum
regulated spill is determined from a table interpolation in the Regulated Spill
Table using the average pool elevation in the Pool Elevation column. Note, if
the MonthlySpill method is selected, the result of
GetMaxOutflowGivenInflow is the value in the Maximum Controlled Release
table slot.

• Bypass (if a Bypass Spill method is selected on the object): If the Bypass
slot is specified by the user (I, Z or R flag), the specified value is used as
the maximum bypass. Otherwise the maximum bypass is determined from
a table interpolation in the Bypass Table using the average pool elevation.
All of the individual outflows are then summed to calculate the maximum
outflow.

The individual outflows are then summed to calculate the maximum outflow.

Mathematical
Expression

Outflowmax releasemax or turbine releasemax
unregulated spillmax regulated spillmax bypassmax+ + +

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

59

RPL Predefined Functions
GetMaxOutflowGivenInflow

59
Syntax Example:

GetMaxOutflowGivenHW(%"Glen Canyon Dam", 3704 "ft", @"June 3, 1983"}

Return Example:

1283.7047 "cms"

66. GetMaxOutflowGivenInflow

This function evaluates to the maximum Outflow from a StorageReservoir, LevelPowerReservoir, or
SlopePowerReservoir with the given Inflow at the specified timestep.This function takes into account
all side flows, sinks and sources. The inflow argument should be the inflow that would go into the
Inflow slot on the reservoir. Since the function already considers Hydrologic Inflow, the hydrologic
inflow value should NOT be included in the inflow argument.

Comments The Tailwater Base Value is automatically added as a dependency to the
calling rule.

Description The maximum combined outflow of a reservoir, including outlet works or
turbine release, and any possible regulated, unregulated, and/or bypass spills.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average inflow over the timestep

3 DATETIME the timestep at which to calculate

Evaluation

A convergence algorithm is used in this function and is detailed in HERE
(Objects.pdf, Section 28.1). The function iterates to convergence by computing
the end of timestep storage and pool elevation, the average pool elevation
over the timestep, and the following outflows:

• Release (if the object is a StorageReservoir): The maximum release is
determined from a table interpolation in the Max Release table using the
average pool elevation as the lookup in the Pool Elevation column.

• Turbine Release (if the object is a LevelPowerReservoir or
SlopePowerReservoir): The maximum turbine release is determined
based on the selected Power method. This calculation is iterative, since
the maximum outflow impacts the reservoir tailwater elevation and
operating head, which affect the maximum turbine release. The selected
Tailwater method is used to determine the tailwater elevation.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

60

RPL Predefined Functions
GetMaxOutflowGivenInflow

60
Evaluation
(continued)

• No Power Turbine Flow: The turbine release is determined from a table
interpolation in the Max Flow Through Turbines table using the average
pool elevation as the lookup in the Reservoir Elevation column.

• Plant Power Coefficient: The turbine release is determined from a table
interpolation in the Max Turbine Q table using the operating head as the
lookup in the Operating Head column. If the average pool elevation is less
than the Minimum Power Elevation, the turbine release is zero.

• Plant Efficiency Curve: The turbine release is determined from a table
interpolation in the Auto Max Turbine Q table using the operating head as
the lookup in the Operating Head column. If the average pool elevation is
less than the Minimum Power Elevation, the turbine release is zero.

• Unit Generator Power: The turbine release is the sum of the maximum
releases for each available turbine, as specified in the Generators Available
and Limit table. Each turbine’s maximum release is determined from a
table interpolation in the Full Generator Flow table using the operating
head as the lookup in the appropriate unit type’s Head for Type n column. If
the average pool elevation is less than the Minimum Power Elevation, the
turbine release is zero.

• Peak Power Equation with Off Peak Spill: The turbine release is the peak
release over the entire timestep. This is calculated by iterating the
selected Tailwater method and operating head calculation with a table
interpolation in the Operating Head vs. Generator Capacity table.

• Peak Power and Peak and Base: The turbine release is the peak flow
over the entire timestep. This is calculated by iterating the selected
Tailwater method and operating head calculation with a table interpolation
in the Best Generator Flow table using the operating head as the lookup
in the Head for Type 1 column.

• LCRPowerCalc: Because this power method has no turbine release limit, a
maximum outflow cannot be calculated. RiverWare issues an error
message and aborts the execution of this rule.

• Unregulated Spill (if an Unregulated Spill method is selected on the
object): The maximum unregulated spill is determined from a table
interpolation in the Unregulated Spill Table using the average pool
elevation as the Pool Elevation.

• Regulated Spill (if a Regulated Spill method is selected on the object): If
the Regulated Spill slot is specified by the user (I, Z or R flag), the
specified value is used as the maximum regulated spill. Otherwise the
maximum regulated spill is determined from a table interpolation in the
Regulated Spill Table using the average pool elevation in the Pool Elevation
column. Note, if the MonthlySpill method is selected, the result of
GetMaxOutflowGivenInflow is the value in the Maximum Controlled
Release table slot.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

61

RPL Predefined Functions
GetMaxOutflowGivenStorage

61
Syntax Example:

GetMaxOutflowGivenInflow(%"Hoover Dam", 68651 "cfs", @"June, 1983}

Return Example:

1283.7047 "cms"

67. GetMaxOutflowGivenStorage

This function evaluates to the maximum Outflow from a StorageReservoir, LevelPowerReservoir, or
SlopePowerReservoir with the given Storage at the specified timestep.

Evaluation
(continued)

• Bypass (if a Bypass Spill method is selected on the object): If the Bypass
slot is specified by the user (I, Z or R flag), the specified value is used as
the maximum bypass. Otherwise the maximum bypass is determined from
a table interpolation in the Bypass Table using the average pool elevation.
in the Pool Elevation column.

Once the iteration has converged on an ending storage and pool elevation, all
of the individual outflows are summed to calculate the maximum outflow

Mathematical
Expression

Comments

This function takes into account the following sources and sinks automatically,
and thus they should not be included in the inflow value for Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2 (Slope Power Reservoir only), Hydrologic
Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped Storage,
and Flow TO Pumped Storage.

These slots in addition to Tailwater Base Value are automatically added as
dependencies to the calling rule.

Description
The maximum combined outflow of a reservoir, including outlet works or
turbine release, and any possible regulated, unregulated, and/or bypass spills.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

Outflowmax releasemax or turbine releasemax
unregulated spillmax regulated spillmax bypassmax+ + +

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

62

RPL Predefined Functions
GetMaxOutflowGivenStorage

62
2 NUMERIC the end of timestep storage

3 DATETIME the timestep at which to calculate

Evaluation

The ending pool elevation is determined from the ending storage in argument 2
and is averaged with the previous timestep’s ending Pool Elevation to yield an
average pool elevation over the timestep. The average pool elevation is then
used to compute the following outflows:

• Release (if the object is a StorageReservoir): The maximum release is
determined from a table interpolation in the Max Release table using the
average pool elevation as the lookup in the Pool Elevation column.

• Turbine Release (if the object is a LevelPowerReservoir or
SlopePowerReservoir): The maximum turbine release is determined based
on the selected Power method. This calculation is iterative, since the
maximum outflow impacts the reservoir tailwater elevation and operating
head, which affect the maximum turbine release. The selected Tailwater
method is used to determine the tailwater elevation.

• No Power Turbine Flow: The turbine release is determined from a table
interpolation in the Max Flow Through Turbines table using the average pool
elevation as the lookup in the Reservoir Elevation column.

• Plant Power Coefficient: The turbine release is determined from a table
interpolation in the Max Turbine Q table using the operating head as the
lookup in the Operating Head column. If the average pool elevation is less
than the Minimum Power Elevation, the turbine release is zero.

• Plant Efficiency Curve: The turbine release is determined from a table
interpolation in the Auto Max Turbine Q table using the operating head as
the lookup in the Operating Head column. If the average pool elevation is
less than the Minimum Power Elevation, the turbine release is zero.

• Unit Generator Power: The turbine release is the sum of the maximum
releases for each available turbine, as specified in the Generators Available
and Limit table. Each turbine’s maximum release is determined from a
table interpolation in the Full Generator Flow table using the operating head
as the lookup in the appropriate unit type’s Head for Type n column. If the
average pool elevation is less than the Minimum Power Elevation, the
turbine release is zero.

• Peak Power Equation with Off Peak Spill: The turbine release is the peak
release over the entire timestep. This is calculated by iterating the selected
Tailwater method and operating head calculation with a table interpolation
in the Operating Head vs. Generator Capacity table.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

63

RPL Predefined Functions
GetMaxOutflowGivenStorage

63
Syntax Example:

GetMaxOutflowGivenStorage(%"Hoover Dam", 17321.400"1000 acre-feet",@"May, 1998"}

Return Example:

1283.7047 "cms"

Evaluation
(continued)

• Peak Power and Peak and Base: The turbine release is the peak flow over
the entire timestep. This is calculated by iterating the selected Tailwater
method and operating head calculation with a table interpolation in the
Best Generator Flow table using the operating head as the lookup in the
Head for Type 1 column.

• LCRPowerCalc: Because this power method has no turbine release limit, a
maximum outflow cannot be calculated. RiverWare issues an error
message and aborts the execution of this rule.

• Unregulated Spill (if an Unregulated Spill method is selected on the
object): The maximum unregulated spill is determined from a table
interpolation in the Unregulated Spill Table using the average pool elevation
as the Pool Elevation.

• Regulated Spill (if a Regulated Spill method is selected on the object): If
the Regulated Spill slot is specified by the user (I, Z or R flag), the specified
value is used as the maximum regulated spill. Otherwise the maximum
regulated spill is determined from a table interpolation in the Regulated
Spill Table using the average pool elevation in the Pool Elevation column.
Note, if the MonthlySpill method is selected, the result of
GetMaxOutflowGivenInflow is the value in the Maximum Controlled Release
table slot.

• Bypass (if a Bypass Spill method is selected on the object): If the Bypass
slot is specified by the user (I, Z or R flag), the specified value is used as
the maximum bypass. Otherwise the maximum bypass is determined from
a table interpolation in the Bypass Table using the average pool elevation.
All of the individual outflows are then summed to calculate the maximum
outflow.

The individual outflows are summed to calculate the maximum outflow.

Mathematical
Expression

Comments

The Tailwater Base Value is automatically added as a dependency to the
calling rule.

This function will issue an error if the “Time Varying Elevation Volume” method
is selected, HERE (Objects.pdf, Section 24.1.28.3), and the specified timestep is
a modification date on the table.

Outflowmax releasemax or turbine releasemax
unregulated spillmax regulated spillmax bypassmax+ + +

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

64

RPL Predefined Functions
GetMaxReleaseGivenInflow

64
68. GetMaxReleaseGivenInflow

This function evaluates to the maximum Release, or Turbine Release from a StorageReservoir,
LevelPowerReservoir, or SlopePowerReservoir with the given Inflow at the specified timestep.

Description The maximum release of a reservoir, through outlet works or turbine release.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average inflow over the timestep

3 DATETIME the timestep at which to calculate

Evaluation

A convergence algorithm is used in this function as detailed HERE
(Objects.pdf, Section 28.1).The function iterates to convergence by computing
the end of timestep storage and pool elevation, the average pool elevation
over the timestep, and the release:

• Release (if the object is a StorageReservoir): The maximum release is
determined from a table interpolation in the Max Release table using the
average pool elevation as the lookup in the Pool Elevation column.

• Turbine Release (if the object is a LevelPowerReservoir or
SlopePowerReservoir): The maximum turbine release is determined
based on the selected Power method. This calculation is iterative, since
the maximum outflow impacts the reservoir tailwater elevation and
operating head, which affect the maximum turbine release. The selected
Tailwater method is used to determine the tailwater elevation.

• No Power Turbine Flow: The turbine release is determined from a table
interpolation in the Max Flow Through Turbines table using the average
pool elevation as the lookup in the Reservoir Elevation column.

• Plant Power Coefficient: The turbine release is determined from a table
interpolation in the Max Turbine Q table using the operating head as the
lookup in the Operating Head column. If the average pool elevation is less
than the Minimum Power Elevation, the turbine release is zero.

• Plant Efficiency Curve: The turbine release is determined from a table
interpolation in the Auto Max Turbine Q table using the operating head as
the lookup in the Operating Head column. If the average pool elevation is
less than the Minimum Power Elevation, the turbine release is zero.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

65

RPL Predefined Functions
GetMaxReleaseGivenInflow

65
Syntax Example:

GetMaxReleaseGivenInflow(%"Hoover Dam", 68651 "cfs", @"June, 1983"}

Return Example:

1283.7047 "cms"

Evaluation
(continued)

• Unit Generator Power: The turbine release is the sum of the maximum
releases for each available turbine, as specified in the Generators
Available and Limit table. Each turbine’s maximum release is determined
from a table interpolation in the Full Generator Flow table using the
operating head as the lookup in the appropriate unit type’s Head for Type
n column. If the average pool elevation is less than the Minimum Power
Elevation, the turbine release is zero.

• Peak Power and Peak and Base: The turbine release is the peak flow over
the entire timestep. This is calculated by iterating the selected Tailwater
method and operating head calculation with a table interpolation in the
Best Generator Flow table using the operating head as the lookup in the
Head for Type 1 column.

• Peak Power Equation with Off Peak Spill: The turbine release is the peak
release over the entire timestep. This is calculated by iterating the
selected Tailwater method and operating head calculation with a table
interpolation in the Operating Head vs. Generator Capacity table.

• LCRPowerCalc: Because this power Method has no turbine release limit,
a maximum Outflow cannot be calculated. RiverWare issues an error
message and aborts the execution of this rule.

Mathematical
Expression

Comments

This function takes into account the following sources and sinks
automatically, and thus they should not be included in the inflow value for
Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2 (Slope Power Reservoir only), Hydrologic
Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped
Storage, and Flow TO Pumped Storage.

These slots in addition to Tailwater Base Value are automatically added as
dependencies to the calling rule.

Releasemax releasemax or turbine releasemax=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

66

RPL Predefined Functions
GetMinSpillGivenInflowRelease

66
69. GetMinSpillGivenInflowRelease

This function evaluates to the minimum spill from a StorageReservoir, LevelPowerReservoir, or
SlopePowerReservoir with the given inflow and release at the specified timestep.

Description The minimum required spill through unregulated and regulated spillways.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average inflow over the timestep

3 NUMERIC the average release over the timestep

4 DATETIME the timestep at which to calculate

Evaluation

This function calls the getMinSpillGivenInflowRelease() function on the given
reservoir object at the given timestep, and provides it with the average inflow
and release over the timestep. A convergence algorithm is used in this
function and is detailed in HERE (Objects.pdf, Section 28.1).The function
iterates to convergence by computing the end of timestep storage and pool
elevation, the average HW over the timestep, and the spill:

• unregulated spill: calculated from the Unregulated Spill Table based on
the average Pool Elevation. See the spill method for more details on how
this is computed

• regulated and bypass spills: assumed to be zero unless input by the user.

• outflow: sum of the calculated spill and the release specified in the
function.

pool elevation: solved for by mass balance using the specified inflow and
calculated outflow.

Mathematical
Expressions

spillmin unregulated spill regulated spill if input() bypass spill if input()+ +=

outflowmin spillmin release+=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

67

RPL Predefined Functions
GetMonth

67
Syntax Example:

GetMinSpillGivenInflowRelease(%"Hoover Dam", Hoover Dam.Inflow[],
0.0 "cfs", @"t"}

Return Example:

1283.7047 "cms"

70. GetMonth

This function evaluates to the integer number of the month of the given datetime.

Comments

This function takes into account the following sources and sinks
automatically, and thus they should not be included in the inflow value for
Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2 (Slope Power Reservoir only), Hydrologic
Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped
Storage, and Flow TO Pumped Storage.

These slots in addition to the previous timestep’s Pool Elevation and
Storage are automatically added as dependencies to the calling rule. Since
the function evaluation depends on these slots, any change to their values at
the indicated timestep, may impact the function result.

Description The month number, base 1, in units of "NONE".

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime of any time within the month

Evaluation

The datetime argument; which may be specified symbolically, is converted into
an actual datetime. Then, the number of the month in which the datetime is
contained, is determined. This function requires that the specified datetime
resolve to at least a partially specified datetime in the “Month day, year” format
with the month specified.

Comments As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

68

RPL Predefined Functions
GetMonthAsString

68
Syntax Example:

GetMonth(@"February 23, 1996")

Return Example:

2.000

71. GetMonthAsString

This function evaluates to the string name of the month of the given datetime.

Syntax Example:

GetMonthAsString(@"February 23, 1996")

Return Example:

"February"

72. GetNumbers

This function evaluates to a sequence of values in a given range with a given offset.

Description The month name.

Type STRING

Arguments Type Meaning

1 DATETIME the datetime of any time within the month

Evaluation

The datetime argument; which may be specified symbolically, is converted into
an actual datetime. Then, the name of the month in which the datetime is in, is
determined. This function requires that the specified datetime resolve to at
least a partially specified datetime in the “Month day, year” format with the
month specified.

Comments
As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.

Description Returns a sequence of values in a given range with a given offset.

Type LIST

Arguments Type Meaning

1 NUMERIC the start value
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

69

RPL Predefined Functions
GetObject

69
Syntax Example:

GetNumbers(0.0 [cfs], 10 [cms], 1 [cfs])

Return Example:

{0.0 "cfs", 1.0 "cfs", 2.0 "cfs", ... , 352.0 "cfs", 353.0 "cfs"}

73. GetObject

This function looks for an object on the global workspace with a given name and returns that object, if
it exists.

Syntax Example:

GetObject("Heron Reservoir")

Return Example:

%"Heron Reservoir"

1 NUMERIC the end value

1 NUMERIC the offset

Evaluation

The end value and offset are converted into the units of the start value. A list is
created whose first item is the start value, the second item is the start value
plus the offset, and so on, until the next value to be added to the list would not
be in the range defined by the start and end value.

Comments
The units of all values must be compatible. If the offset is positive and the start
value is greater than the end value, the return list is empty; similarly, if the offset
is negative and the start value is less than the end value, the return list is empty.

Description Return the object with a given name.

Type OBJECT

Arguments Type Meaning

1 STRING the name of the object for which to search.

Evaluation The function returns the object with the given name, if it exists.

Comments If no object with the given name exists on the global workspace, then the run
is aborted with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

70

RPL Predefined Functions
GetObjectDebt

70
74. GetObjectDebt

This function evaluates to the sum of the debts to all accounting exchanges which may be paid by
supplies on the given object. If there are no exchange paybacks on the given object, the debt is zero.

Syntax Example:

GetObjectDebt(%"Heron Reservoir", @"t")

Return Example:

1.823 "m3"

Description The total debt which can be paid by this object.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the object who’s debt to calculate

2 DATETIME the timestep at which to calculate the debt

Evaluation
The function loops over all supplies, on all accounts, on the given object. If a
supply is an exchange payback source, the value of its debt slot at the given
timestep (if known) is added to the cumulative debt of the object.

Mathematical
Expression

Comments
If the debt slot of a payback supply at the given timestep is not known, its
debt is assumed to be zero. If there are no payback supplies on the given
object, the total debt is zero.

NUMERIC Debt payback timestep,()

payback source supplies object()

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

71

RPL Predefined Functions
GetObjectFromSlot

71
75. GetObjectFromSlot

Syntax Example:

GetObjectFromSlot($"ResA^Municipal.Inflow")

Return Example:

%"ResA"

76. GetPaybackDebt

This function evaluates to the value of the debt slot of the given exchange payback source at the given
timestep.

Description Return a slot’s parent object.

Type OBJECT

Arguments Meaning

1 SLOT The slot whose object is returned.

Comments It is an error if the slot is not on a Simulation Object or an account (which is on an
Object).

Description The debt at a payback source.

Type NUMERIC

Arguments Type Meaning

1 STRING the payback source supply whose debt to calculate

2 DATETIME the timestep at which to calculate the debt

Evaluation
The function begins by verifying that the string argument is an accounting
supply, and that this supply is a payback source. If so, the function evaluates to
the value of the payback’s debt slot at the given timestep.

Mathematical
Expression

Comments

If the string argument is not a valid supply, or the supply is not a payback
source, this function aborts the run with an error. If the debt slot of the payback
for which this supply is a source does not contain a value at the given
timestep, the function evaluates to zero.

NUMERIC Debt payback timestep,()=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

72

RPL Predefined Functions
GetRowIndex

72
Syntax Example:

GetPaybackDebt("Heron SanJuan to WillowAndRioChama SanJuan.Supply",
@"t")

Return Example:

1.823 "m3"

77. GetRowIndex

This function evaluates to the index of the row with the given name in a table slot.

Syntax Example:

GetRowIndex(RiverData.Minimum Flow,"Dolores")

Return Example:

1.00000

Description The index of the table slot row whose name matches a string.

Type NUMERIC

Arguments Type Meaning

1 SLOT the table slot in which to find a row

2 STRING the name of the row to match

Evaluation
The labels of the slot rows are compared to the string argument until a match is
found.

Comments

Table row and column indices are zero based and have units of type [NONE]. If
the specified slot is not a table slot or the specified string is not the label of a
row on the slot, this function aborts the run with an error. If several rows of the
table slot match the string argument, this function evaluates to the index of the
topmost matching row.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

73

RPL Predefined Functions
GetRowIndexByDate

73
78. GetRowIndexByDate

Syntax Example:

GetRowIndexByDate(DeepReservoir.Inflow,@"t")

Return Example:

5.00000

Description
Given a slot with rows indexed by date, this function returns the 0-based

index corresponding to a given date.

Type NUMERIC

Arguments Type Meaning

1 SLOT the slot in which to find a row

2 DATETIME date of the row to match

Comments

The value -1 is returned if the given date is not within the date range of the slot.

This function is applicable to the following types of slot:

• Series Slots

• Table Series Slots

• Periodic Slot

It is considered an error if the slot is not indexed by date (i.e, not one of these
types).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

74

RPL Predefined Functions
GetRunCycleIndex

74
79. GetRunCycleIndex

Syntax Example:

GetRunCycleIndex()

Return Example:

2.0000

80. GetRunIndex

This function evaluates to the number of the model run. It is commonly used within a Multiple Run
Management ruleset to determine the run which is currently executing.

Description Returns the 1-based index of the current cycle through the timesteps in the run
time range, in units of "NONE".

Type NUMERIC

Arguments Type Meaning

none

Comments

Rulebased simulations can cycle through the run timesteps more than once
each run (see the Rulebased Simulation section HERE (, Section 1.7.4)). This
function provides access to the current run cycle, which can be used, for
example, within execution constraints to control the cycle on which a rule
should execute. If called from outside of a run or when the controller is not
Rulebased Simulation or Inline Rulebased Simulation and Accounting, the
behavior of this function is undefined.

Description The number of the currently executing model run, base 1, in units of "NONE".

Type NUMERIC

Arguments Type Meaning

none

Comments

If the current run is not a Multiple Run Management run, this function evaluates
to 1. If called from within a pre-MRM run rule of an iterative MRM run, this
function evaluates to 1. If called from within a post-run rule of an iterative MRM,
this function evaluates to the index of the run which just completed.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

75

RPL Predefined Functions
GetSelectedUserMethod

75
Syntax Example:

GetRunIndex()

Return Example:

3.0000

81. GetSelectedUserMethod

Syntax Example:

GetSelectedUserMethod(DeepReservoir,"Power")

Return Example:

"Peak Power"

Description Given an object and a user method category name, return the name of the
selected method.

Type STRING

Arguments Type Meaning

1 OBJECT the simulation object

2 STRING name of the user method category

Comments An error is issued if the object or the category name is not found.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

76

RPL Predefined Functions
GetSeriesSlots

76
82. GetSeriesSlots

Syntax Example:

GetSeriesSlot(%"My Data Object")

Return Example:

{$"My Data Object.Series 1", $"My Data Object.Series 2"}

83. GetSlot

This function looks for a slot on the global workspace with a given name and returns that slot, if it
exists.

Syntax Example:

GetSlot("Heron Reservoir.Inflow")
GetSlot("Abiquiu Reservoir^RioGrande.Inflow")

Return Example:

$"Heron Reservoir.Inflow"
$"Abiquiu Reservoir^RioGrande.Inflow"

Description Returns a list of all of the visible Series Slots on an object.

Type LIST{SLOT}

Arguments Type Meaning

1 OBJECT The object whose Series Slots are to be returned.

Comments If no object with the given name exists on the global workspace, then the run
is aborted with an error.

Description Return the slot with a given name.

Type SLOT

Arguments Type Meaning

1 STRING the name of the slot for which to search.

Evaluation The function returns the slot with the given name, if it exists.

Comments If no slot with the given name exists on the global workspace, then the run is
aborted with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

77

RPL Predefined Functions
GetSlotName

77
84. GetSlotName

Syntax Example:

GetSlotName($"ResA^Municipal.Inflow")

Return Example:

"Inflow"

Description Return the slot name portion of a slot’s full name.

Type STRING

Arguments Meaning

1 SLOT The slot whose name is returned.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

78

RPL Predefined Functions
GetSlotVals and GetSlotValsNaNToZero

78
85. GetSlotVals and GetSlotValsNaNToZero

Syntax Example:

GetSlotVals(Dolores.Inflow, @"t",
@"September 31,Current Year")
GetSlotValsNaNToZero(Mead.Seepage, @”Start Timestep”, @”t”)

Return Example:

{ 1.43"cms", 2.12 "cms" }

Description
This function evaluates to a list composed of the values of a given series slot
within a time range. GetSlotVals can also be used on a periodic slot, while
GetSlotValsNaNToZero, cannot.

Type LIST{NUMERIC}

Arguments Type Meaning

1 SLOT the series (or periodic slot) whose values to get

2 DATETIME start datetime

3 DATETIME end datetime

Evaluation

A list is generated by looking up each value in the given slot, beginning with
the start datetime, and ending with the end datetime. All slot values in the
range are returned, regardless of the slot data’s timestep resolution vis-a-vis
that of the run control.

Mathematical
Expression

Comments

If the start datetime or end datetime does not match one of the slot’s values’,
or if the start datetime is after the end datetime, this function aborts the run
with an error. For GetSlotVals, if one of the slot values within the desired time
range is a NaN, the function exits the rule with an early termination. For
GetSlotValsNaNToZero, it converts any NaNs into zero.

For periodic slots and GetSlotVals, the dates used are those within the range
and falling on a run timestep; the column used is the first (column 0).

NUMERIC{ } slot start datetime() ... slot end datetime(), ,{ }=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

79

RPL Predefined Functions
GetSlotValsByCol and GetSlotValsByColNaNToZero

79
86. GetSlotValsByCol and GetSlotValsByColNaNToZero

Syntax Example:

GetSlotValsByCol(WaterUser1.Periodic Diversion Request, @"t",
@"September 31,Current Year", 3)
GetSlotValsByColNaNToZero(WaterUser1.IrrigatedAreaByCrop, @"t",
@"September 31,Current Year", 3)

Return Example:

{ 1.43"cms", 2.12 "cms", 2.54 "cms", 2.2 "cms"}

Description
This function evaluates to a list composed of the values in a column of a given
Agg Series Slots (or for GetSlotValsByCol, it could be a periodic slot) within a
time range.

Type LIST{NUMERIC}

Arguments Type Meaning

1 SLOT
the agg series slot (or for GetSlotValsByCol, it could be
a periodic slot) whose values to get

2 DATETIME start datetime

3 DATETIME end datetime

4 NUMERIC the column (interpreted as a 0-based integral index)

Evaluation

A list is generated by looking up each value in the given column of the slot,
beginning with the start datetime, and ending with the end datetime. All slot
values in the range are returned, regardless of the slot data’s timestep
resolution vis-a-vis that of the run control.

Mathematical
Expression

Comments

If the slot is an Agg Series Slot and the start datetime or end datetime does
not match one of the slot’s values’, or if the start datetime is after the end
datetime, this function aborts the run with an error. For GetSlotValsByCol, if
one of the slot values within the desired time range is a NaN, the function
exits the rule with an early termination. For GetSlotValsByColNaNToZero, it
converts any NaNs into zero.

For periodic slots and GetSlotValsByCol, the dates used are those within the
range and falling on a run timestep.

NUMERIC{ } slot start datetime() ... slot end datetime(), ,{ }=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

80

RPL Predefined Functions
GetTableColumnVals & GetTableColumnValsSkipNaN

80
87. GetTableColumnVals & GetTableColumnValsSkipNaN

This function evaluates to a list. Each item of the list is the value of the given table slot, in the given
column, from the given start row, to the given end row.

Syntax Example:

GetTableColumnVals(Chickamauga Data.Power Coeffs, 0, 0, 1)
GetTableColumnValsSkipNaN(Chickamauga Data.Power Coeffs, 0, 0, 1)

Return Example:

{ 1.43"cms", 2.12 "cms"}

Description All of the values of a table slot column between two rows.

Type LIST{NUMERIC}

Arguments Type Meaning

1 SLOT the table slot whose values to get

2 NUMERIC column

3 NUMERIC start row

4 NUMERIC end row

Evaluation
A list is generated by looking up each value in the given column of the given
table slot beginning with the start row, and ending with the end row (inclusive).
Rows and columns are numbered beginning with zero.

Mathematical
Expression

Comments

Units are not required for row and column indices and, if provided, will be
ignored. If the column, start row, or end row does not exist in the slot, or if the
start row is greater than the end row, this function aborts the run with an error.

For the GetTableColumnVals function, if one of the slot values within the
desired time range is a NaN, the function exits the rule with an early
termination. For the GetTableColumnValsSkipNaN variation of this function,
these values are just omitted from the return list.

NUMERIC{ } slot start row column,() ... slot end row column,(), ,{ }=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

81

RPL Predefined Functions
GetTableRowVals & GetTableRowValsSkipNaN

81
88. GetTableRowVals & GetTableRowValsSkipNaN

This function evaluates to a list. Each item of the list is the value of the given table slot, in the given
row, from the given start column, to the given end column.

Syntax Example:

GetTableRowVals(Chickamauga Data.Power Coeffs, 0, 0, 1)
GetTableRowValsSkipNaN(Chickamauga Data.Power Coeffs, 0, 0, 1)

Return Example:

{2.54 "cms", 2.2 "cms"}

Description All of the values of a table slot column between two columns.

Type LIST{NUMERIC}

Arguments Type Meaning

1 SLOT the table slot whose values to get

2 NUMERIC row

3 NUMERIC start column

4 NUMERIC end column

Evaluation
A list is generated by looking up each value in the given row, of the given table
slot beginning with the start column, and ending with the end column (inclusive).
Rows and columns are numbered beginning with zero.

Mathematical
Expression

Comments

Units are not required for row and column indices and, if provided, will be
ignored. If the row, start column, or end column do not exist in the slot, or if the
start column is greater than the end column, this function aborts the run with an
error.

For the GetTableRowVals function, if one of the slot values within the desired
time range is a NaN, the function exits the rule with an early termination. For the
GetTableRowValsSkipNaN variation of this function, these values are just
omitted from the return list.

NUMERIC{ } slot row start column,() ... slot row end column,(), ,{ }=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

82

RPL Predefined Functions
GetTimestep

82
89. GetTimestep

This function evaluates to the length of the timestep ending on the given datetime.

Syntax Example:

GetTimestep(@"February 23, 1996")

Return Example:

21600 "sec" in a 6-hour model
86400 "sec" in a daily model
2505600.0 "sec" in a monthly model

Description The length of a timestep, in units of "sec".

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime of the end of the timestep

Evaluation

The datetime argument; which may be specified symbolically, is converted into an
actual datetime. Then, the length of the timestep within which this time is, is
determined.

This function requires that the specified datetime resolve to a fully specified
datetime or an error will occur.

Comments

If the given datetime corresponds to the moment when one timestep ends and
another begins, this function evaluates to the length of the timestep which is
ending. As elsewhere in RiverWare, 24:00 hours is considered to be the day
which is ending, and 00:00 hours is considered to be the day which is just
beginning.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

83

RPL Predefined Functions
GetUpperBound

83
90. GetUpperBound

Syntax Example:

GetUpperBound(“Res A.Power”)

Return Example:

400.0 MW

91. GetUpperBoundByCol

Syntax Example:

GetUpperBoundByCol("Res A.Hydro Block Use", 3)

Return Example:

200.0 MWH

Description Returns the upper bound for the given series slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT the slot whose bound is to be returned.

Evaluation

Comments
It is considered an error if the specified slot is not a series slot with a valid upper
bound. The upper bound is specified in the slot configuration under the view
menu.

Description
Returns the upper bound for the specified column of the given aggregate series
slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT the agg slot whose bound is to be returned.

2 NUMERIC the column index (0-based).

Evaluation

Comments
It is considered an error if the input slot is not an Agg. Series Slot with a valid
upper bound for the given column. The upper bound is specified in the slot
configuration under the view menu.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

84

RPL Predefined Functions
GetYear

84
92. GetYear

This function evaluates to the year of the given datetime.

Syntax Example:

GetYear(@"24:00 December 31, 1999")

Return Example:

1999.0

93. GetYearAsString

This function evaluates to the year of the given datetime as a string.

Description The year, expressed as a number in units of "NONE".

Type NUMERIC

Arguments Type Meaning

1 DATETIME the datetime

Evaluation

The datetime argument; which may be specified symbolically, is converted
into an actual datetime. Then, the year within which this time is, is
determined. This function requires that the datetime be at least partially
specified with a valid year, E.g. @"Year 2010" or @"Current Year" will work.

Comments As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.

Description The year as a string.

Type STRING

Arguments Type Meaning

1 DATETIME the datetime

Evaluation

The datetime argument; which may be specified symbolically, is converted into
an actual datetime and the year is returned as a string. This function requires
that the datetime be at least partially specified with a valid year, E.g. @"Year
2010" or @"Current Year" will work.

Comments As elsewhere in RiverWare, 24:00 hours is considered to be the day which is
ending, and 00:00 hours is considered to be the day which is just beginning.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

85

RPL Predefined Functions
HasFlag

85
Syntax Example:

GetYearAsString(@"February 23, 1996")

Return Example:

"1996"

94. HasFlag

This function returns whether the specified slot on the given timestep has the specified flag.

Description Use to test the flag status of a slot at a given datetime.

Type BOOLEAN

Arguments Type Meaning

1 SLOT The slot to test

2 DATETIME The datetime at which to test

3 STRING

The flag to test. The flag is specified by string, which can
be the single letter version of the flag or the full flag
name:

O Output
I Input
R Rules
B Best Efficiency
M Maximum Capacity
i Iterative MRM
Z DMI Input
U Unit Values
T Target
TB Target-Begin
tb Target-Begin-RiverWare
S Surcharge Release
G Regulation Discharge
D Drift
m Method
A Account
P Propagated

Evaluation

The function returns whether or not the slot has the flag at that date.

If the slot does not have a value at the date then the function returns that an
invalid value was found (which will cause the calling block to terminate early).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

86

RPL Predefined Functions
HasFlag

86
Syntax Example:

HasFlag($”Mead.Outflow”, @”24:00 December 31, 1999", “R”)
HasFlag($”Powell.Storage”, @”24:00 March 31, 2006", “Target”)

Return Example:

TRUE or FALSE

Comments

An error is returned if the slot is not a Series Slot or if the date is not a legal
timestep for that slot.

See also the IsInput function, HERE (IsInput) which is a more limited function
used to test for the “I” or “Z” flag. Note, unlike this function, it returns FALSE
when the slot does not have a value.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

87

RPL Predefined Functions
HasRuleFiredSuccessfully

87
95. HasRuleFiredSuccessfully

Syntax Example:

HasRuleFiredSuccessfully("Smith Flood Control")

Description Returns whether or not the rule with a given name has successfully executed
(with or without effect) during the current timestep of a rulebased simulation.

Type BOOLEAN

Arguments Type Meaning

1 STRING
The name of the rule. The special string "Current Rule"
or “ThisRule” (not case sensitive) is interpreted as a
reference to the currently executing rule.

Evaluation

This function returns TRUE if:

• the rule finished successfully (i.e., at least one assignment is attempted
and none fail), or

• the rule finished ineffectively (i.e., the rule is evaluated but the logic within
the execution constraint or within the body of the rule decides no
assignment is necessary or the rule attempts assignment but priority is
junior so no assignment is made).

The function returns FALSE if

• the rule has not yet fired, or

• the rule has fired but terminated early (the rule encountered a NaN in a
slot value).

Note that, as mentioned above, if the input name is "Current Rule" or
“ThisRule”, then this is taken to be a reference to the currently executing rule.

Using the structure NOT HasRuleFiredSuccessfully("ThisRule") will cause the
that rule to only execute successfully once.

Comments

HasRuleFiredSuccessfully behave as follows for the various RPL Sets:

• Rulebased Simulation Rules: has the rule fired in the current timestep as
described above

• Initialization Rules: has the rule fired in the current single run.

• Iterative MRM Rules: has the rule fired in the current MRM iteration (single
run).

• Global Functions set: the behavior for the caller's application.

• Other: not applicable, aborts with an error message.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

88

RPL Predefined Functions
HydropowerRelease

88
HasRuleFiredSuccessfully("Current Rule")
HasRuleFiredSuccessfully("ThisRule")

Return Example:

TRUE or FALSE

96. HydropowerRelease

This function calculates the additional outflow necessary to satisfy an unmet load (energy requirement)
while not causing additional downstream flooding.

Description
Calculates the additional outflow necessary to meet an unmet load, if any exists. The
function limits the additional release to ensure that additional downstream flooding
does not occur.

Type LIST { LIST { SLOT, NUMERIC, OBJECT } }

Arguments Type Meaning

1 STRING the name of the computational subbasin
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

89

RPL Predefined Functions
HydropowerRelease

89
Evaluation

The function does the following:

1. Prioritizes the power reservoirs in the basin according to the relative Load
shortage using the equation below.

If Load is unknown because the Seasonal Load Time method is selected, it is
calculated. The calculated shortage then is a value less than one. The reservoirs
with the highest values are first, the lowest reservoirs last.

2. Runs the selected Additional Hydropower Release method on the each power
reservoir in the subbasin to calculate the proposed additional release required to
meet the load within outflow constraints.

3. In order of priority, hypothetically makes the additional release, visits downstream
control points until it reaches a tandem reservoir or the end of the subbasin,
whichever comes first. If the release causes (additional) flooding at a control point,
it reduces the release until flooding is not caused or the release becomes zero.
Resulting releases are then hypothetically routed to downstream control points to
make adjustments to their available space hydrographs.

A control point’s available space hydrograph (in units of flow projected into the
future based on the routing coefficients on the control point) is calculated as:

Inflow includes the value of the Inflow slot (at the time of the last dispatch) and the
additional inflow resulting from the hypothetical additional releases from upstream
reservoirs. It also contains the proposed flood control release hydrograph from the
last pass of the flood control method.

Note: Note, if the “Releases Not Constrained by Flooding” method is
selected in the “Hydropower Flooding Exception” category on the control
point (HERE (Objects.pdf, Section 9.1.16.2), the control point is ignored,
i.e. flooding is allowed at that control point.

Shortage Load Energy–
Load

--------------------------------------=

Available Space Regulation Discharge Inflow forecasted Local Inflow+()–=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

90

RPL Predefined Functions
HydropowerRelease

90
Syntax Example:

HydropowerRelease("Flood Basin") where "Flood Basin" contains Res1 and Res2.

Return Example:

{ {"Res1.Additional Hydropower Release", 63.32 "cms", "res1"},
 {"Res1.Outflow", 63.32 "cms", "Res1"},
 {"Res2.Additional Hydropower Release", 23.20 "cms", "Res2"}
 {"Res2.Outflow", 32.02 "cms", "Res2"},
 {"Res2.Load", 2.1 "MWH", "Res2"} }

Use Examples:

FOREACH (LIST triplet IN HydropowerRelease("Flood Basin")) DO
 (triplet<0>)[] = triplet<1>
ENDFOREACH

Evaluation
(cont)

4. Once all power reservoirs have been visited (in priority order), the
HydropowerRelease function returns to the calling rule. For each reservoir in the
subbasin, three triplets may be returned:

• Additional Power Release: This is the additional release to meet the load. If the
proposed release is positive, but the additional power release was constrained to zero,
the triplet {reservoir.Additional Power Release, 0.0, reservoir} will be returned. If the
proposed release is zero, the Additional Power Release (of zero) triplet will not be
returned.

• Outflow: If the new Outflow is the same as the existing Outflow, no Outflow triplet is
returned because the value of the Outflow slot will not change as a direct result of this
rule. Otherwise the value for outflow is the existing Outflow plus the additional power
release.

• Load: the Load triplet is only returned if the “Seasonal Load Time” method (HERE
(Objects.pdf, Section 17.1.37.7)) is selected on the reservoir.

The calling rule is expected to make the assignments of the values to the slots

Comments

This function is dependent on having executed the predefined function
FloodControl() on a computational subbasin using the Operating Level Balancing
method. This flood control method operation sets up the network topology and
necessary data. HydropowerRelease requires that the reservoirs in the subbasin
have already dispatched and have valid values in the Regulation Discharge,
Outflow, Energy, and Load slots.

Use of this function for USACE-SWD: HERE (USACE_SWD.pdf, Section 3.9.3).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

91

RPL Predefined Functions
HydropowerRelease

91
Hypothetical Simulation Overview

This section presents an overview of a set of functions that allow the user to run a “hypothetical
simulation” where:
• a limited number of objects on the workspace are involved
• the simulation has no side-effects, i.e., after simulation the workspace is exactly as before
• the objects involved initially have their current values, except for those values that the user provides

as “fixed values” to the hypothetical simulation
• at least one and possibly more values resulting from the hypothetical simulation are available for use

within rulebased simulation

Why would you want to do this? Lets consider the following example. Suppose
that you would like to maintain a minimum flow of 100 cfs at some point in the
River Y. Many miles upstream from this point you can control the outflow from
Reservoir X. One question you might ask is: what is the release from X which
will lead to the 100 cfs flow at the point of concern? A related but simpler
question is: If I release 200 cfs from reservoir X, what will be the flow at the
point of concern?
Even the answer to the second question can’t be easily predicted; you might
have to take into consideration many hydrologic inflows and flow-dependent
physical processes like lags, losses, and diversions through different sections of
River Y. you might even require that you know the release over some extended
period of time in order to be able to determine the flow in the Y at a single time. At any rate, this is
exactly the sort of computation performed by the objects in a RiverWare simulation.
On the other hand, answering the first question requires not only knowing the physical consequences of
outflow from X, but a search for the release which has the target consequence. The target consequence
cannot just be set and allowed to solve upstream because there are routing algorithms can only solve in
the downstream direction.
The following functions can be used to do hypothetical simulations:
• HypSim - perform a hypothetical simulation with user specified values and returns user-requested

result values. Click HERE (HypSim) for more information on this function.
• HypLimitSim - perform hypothetical simulations iteratively to find a value which, when set on a given

slot, will lead to another slot achieving but not exceeding a limiting value. Click HERE (HypLimitSim)
for more information on this function.

• HypLimitSimWithStatus - Same as HypLimitSim but with information on whether a satisfying value
was found or not. Click HERE (HypLimitSimWithStatus) for more information on this function.

• HypTargetSim - perform hypothetical simulations iteratively to find a value which, when set on a
given slot, will lead to a desired value on another slot. Click HERE (HypTargetSim) for more informa-
tion on this function.

• HypTargetSimWithStatus - Same as HypTargetSim but with information on whether a satisfying
value was found or not. Click HERE (HypTargetSimWithStatus) for more information on this function.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

92

RPL Predefined Functions
HydropowerRelease

92
Each hypothetical simulation function proceeds in the following manner. The first time the function is
called, all of the objects and links in the specified subbasin are cloned. This copies each object
including all of the slots and values. This cloning is necessary as all subsequent computations are
performed on the cloned objects, thereby not affecting the real objects on the workspace. Once the
objects are cloned, any values specified in the arguments as “fixed values” are set on the objects.
Remember, the function also copied all its data at the time it was cloned, so the fixed values are values
that are to be set on the object that are not already there.
Then, the hypothetical simulation performs the computations described for that function. For HypSim,
the cloned objects will dispatch to simulate the effects of the fixed values. A list containing the values
of the specified slots at the specified datetimes will be returned. The calling rule/function can then use
these results in its computation.
HypLimitSim, HypLimitSimWithStatus, HypTargetSim, and HypTargetSimWithStatus perform an
iterative solution. For each of these functions, you provide min and max values for a control slot and a
target or limit of a downstream slot. The computations then boil down to univariate zero-finding, where
each evaluation is a hypothetical simulation with different inputs. The solution is found using the
bisection method as shown in the following figure; it simulates using the min control slot value (1),
then the max control slot value (2), then bisects between the two(3). It continues bisecting until the
tolerance or desired accuracy of the limit/target slot is met and a solution is found (N.) If the result of
any try is outside of the range of previous tries, then a warning message is issued saying that the
function is non-monotonic. There are either multiple solutions or the function is not well behaved. This
typically leads to convergence issues.

Following are some notes to consider about hypothetical simulation and particularly the iterative
hypothetical simulations:

Ta
rg

et
/L

im
it

Sl
ot

Control SlotMin Max

Max

Min

Desired Value

result

1

2

3

N

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

93

RPL Predefined Functions
HypSim

93
• These are hypothetical simulations, not rulebased simulations. You can set fixed values in the argu-
ments but they cannot change once the function is executed.

• Hypothetical simulation does not support accounting or optimization functionality.
• Each iteration within hypothetical simulation is setting the control value to a new value and re-simulat-

ing the system. Some object methods may have a dependence on previous solutions that will lead to
different results. Also, slot convergence can be an issue. If setting a new value on a slot does not
propagate down the system because convergence is too loose, then the target/limit slot value may
never be achieved.

• Use the “WithStatus” version of the function if you suspect that the function may not work in all cases
but you still need a result. If these functions do not find a result, the closest value is returned along
with the status. But, make sure to check the status in the calling rule or function, don’t just use the
result blindly. Use the “without status” version if you reasonably expect there to be a solution. Then, if
there is a problem with the computation and no solution is found, the run is stopped and a message is
posted.

• For the iterative functions, if there are multiple timesteps involved, the control slot is always set to the
same value for all timesteps in the hypothetical simulation range.

• These hypothetical simulation functions are expensive in terms of run time. Following are some
approaches to limit slow down from these functions:
- Limit their use as much as possible.
- If you need to call a function multiple times per timestep with the same arguments, create a helper

function with no arguments; functions with no arguments are executed once per timestep and the
results are cached for later use.

- Only include the relevant objects in the subbasin; cloning objects and copying values is time and
memory expensive.

- Only include as many “fixed values” as necessary. If you are only solving for the target slot value
at t+2, don’t include fixed values from t through t+7. This will lead to unnecessary dispatching of
the cloned objects.

97. HypSim

This function performs a hypothetical simulation with user specified values and returns user-requested
result values from the simulation.

Description
Hypothetically simulate a portion of the workspace with user input values and
return requested result values.

Type LIST {NUMERIC}

Arguments Type Meaning
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

94

RPL Predefined Functions
HypSim

94
Syntax Example:

HypSim("upper basin", {{Navajo.Outflow, 1000 "cfs", @"t"},
{FlamingGorge.Outflow, 1000 "cfs", @"t"}}, {{GreenColorado.Outflow, @"t + 1
Timesteps"}, {SanJuanColorado.Outflow, @"t + 2 Timesteps"}})

Return Example:

{2.83 "cms", 2.86 "cms"}

1 STRING

Subbasin name over which to perform the hypothetical
simulation.
If there is no Subbasin with the given name, the string is
taken to be the name of an object and a temporary
Subbasin is created containing only that object.

An error will be issued if this subbasin contains a Data
Object.

2
LIST { LIST {
SLOT, NUMERIC,
DATETIME } }

Fixed value(s) the user would like to set in each
hypothetical simulation. Each item in the list is a list itself
containing a slot, the value to set, and the timestep at
which to set it.

3
LIST { LIST {
SLOT, DATETIME
} }

Output(s) to get back from the simulation - each output
must specify the slot and the timestep from which to return
a value

4 NUMERIC

The minimum number of timesteps before and after the
current timestep which might be involved in the simulation.
As part of hypothetical simulation RiverWare makes
copies of the objects in the subbasin and this input is used
to determine how much data should be copied from each
object. One can usually set this value to 0 and RiverWare
will use a heuristic to determine the range over which to
copy data. If this function fails because there was not
enough data on some object, then input a higher value.

Evaluation

When function is executed, a hypothetical simulation is initiated where the fixed
values are set on the specified slots, the portion of the workspace specified by
the Subbasin is simulated, and the values of the output slots are returned as a
list.

Comments

This simulation is hypothetical in that none of the actual values on any objects
in the workspace will be modified by hypothetical simulation within a rule.
HypSim does not support accounting or optimization functionality.

HypSim was originally named HypotheticalSimulation.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

95

RPL Predefined Functions
HypLimitSim

95
98. HypLimitSim

This function finds a value which, when set on a given slot, will lead to another slot achieving but not
exceeding a limiting value within a given time frame.

Description

Given a control slot and a limit slot, limit date/time, and limit value, this function
uses hypothetical simulation (see description of the predefined function
HypSim) to find a value x such that if the control slot were set to x at all
timesteps in the range [current date, target date], then the limit slot’s maximum
value in this range would equal the target value. If the value x exceeds the
physical constraint for that slot at a particular timestep (max outflow on a
reservoir for example), then the constrained value is used instead of the x value
for that timestep.

Type NUMERIC

Arguments Type Meaning

1 STRING

The name of the Subbasin over which to perform the
hypothetical simulations. This should include the objects
on which the control and limit slot exist as well as all other
objects necessary to compute the limit slot’s value.
If there is no Subbasin with the given name, the string is
taken to be the name of an object and a temporary
Subbasin is created containing only that object.

An error will be issued if this subbasin contains a Data
Object.

2 SLOT
The control slot, the slot with which you desire to control
the target slot’s value.

3 NUMERIC
The minimum control slot value. A value less than this is
not considered a legal return value.

4 NUMERIC
The maximum control slot value. A value greater than this
is not considered a legal return value.

5
LIST { LIST {
SLOT, NUMERIC,
DATETIME } }

Fixed value(s) the user would like to set in each
hypothetical simulation. Each item in the list is a list itself
containing a slot, the value to set, and the timestep at
which to set it.

6 SLOT
The limit slot, the slot whose value you would like to attain
a certain value.

7 DATETIME
The end limit date/time, the end of the time range during
which you are concerned with the limit slot’s value.

8 NUMERIC
The limit value, the value which you would like the limit slot
to achieve but not exceed during the limiting time range.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

96

RPL Predefined Functions
HypLimitSim

96
Syntax Example:

HypLimitSim("upper basin", Navajo.Outflow, 10 "cfs", 1000 "cfs",
{{Navajo.Outflow, 1000 "cfs", @"t"}}, Powell.Inflow, @"t", 100 "cfs", 0.1 "cfs",
10)

Return Example:

18.34 "cms"

9 NUMERIC

The tolerance or desired accuracy of the returned value. If
the function is successful, it indicates that setting the
control slot to the returned value will lead to a maximum
limit slot value which differs by no more than the tolerance
from the desired limit value.

10 NUMERIC

The maximum number of iterations of hypothetical
simulations allowed. If this number is reached without
finding an return value within the tolerance, then the
function fails.

11 NUMERIC

The minimum number of timesteps before and after the
current timestep which might be involved in the simulation.
As part of hypothetical simulation RiverWare makes
copies of the objects in the subbasin and this input is used
to determine how much data should be copied from each
object. One can usually set this value to 0 and RiverWare
will use a heuristic to determine the range over which to
copy data. If this function fails because there was not
enough data on some object, then input a higher value.

Evaluation
The implementation of this function uses an iterative algorithm (the bisection
algorithm) which performs an hypothetical simulation of the subbasin at each
iteration.

Comments

RiverWare assumes that the target value range (computed using the minimum
and maximum control slot values) includes the target value itself. For example, if
the control slot minimum of 100 cfs leads to a simulated target value of 100 cfs.
the control slot maximum of 1000 cfs leads to a simulated target slot value of
200 cfs, and the target value is 300 cfs, then the function would fail because the
target value is not in the range implied by the input control slot minimum and
maximum values (100-200 cfs). Mathematically, this is the assumption that limit
slot’s value is a monotonic function of the control slot’s value.

See also documentation HERE; all comments mentioned there apply here as
well.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

97

RPL Predefined Functions
HypLimitSimWithStatus

97
99. HypLimitSimWithStatus

This function finds a value which, when set on a given slot, will lead to another slot achieving but not
exceeding a limiting within a given time frame. If a value satisfying this criterion is not found, then an
attempt is made to find a value that comes close to doing so.

Description

Given a control slot and a limit slot, limit end date/time, and limit value, this
function uses hypothetical simulation (see description of the predefined function
HypSim) to find a value x such that if the control slot were set to x at all
timesteps in the range [current date, end limit date], then the limit slot’s
maximum value in this range would equal the target value. If the value x
exceeds the physical constraint for that slot at a particular timestep (max
outflow on a reservoir for example), then the constrained value is used instead
of the x value for that timestep.

A four-item list is returned. The first item in the list is a boolean TRUE value if a
satisfying control slot value was found, FALSE otherwise. If the first item is
TRUE, then the second item is the satisfying control slot value, otherwise this
value is as close as the function could get to finding such a value. The third item
is a list of the control slot values used in the solution. These values will all be
the same as the second item, except if some of the values were constrained
due to physical limitations. The fourth item is a list of the limit slot values that
correspond to the control slot values given in the previous list.

Note: this function is very similar to HypLimitSim: this only difference is that
HypLimitSim fails if it can not find a satisfying control slot value, whereas this
function does not fail, rather it still returns a value, along with the indication that
this value does not achieve the limit and the additional information discussed
above.

Type LIST {BOOLEAN, NUMERIC, LIST, LIST}

Arguments Type Meaning

1 STRING

The name of the Subbasin over which to perform the
hypothetical simulations. This should include the objects
on which the control and limit slot exist as well as all other
objects necessary to compute the limit slot’s value.
If there is no Subbasin with the given name, the string is
taken to be the name of an object and a temporary
Subbasin is created containing only that object.

An error will be issued if this subbasin contains a Data
Object.

2 SLOT
The control slot, the slot with which you desire to control
the target slot’s value.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

98

RPL Predefined Functions
HypLimitSimWithStatus

98
3 NUMERIC
The minimum control slot value. A value less than this is
not considered a legal return value.

4 NUMERIC
The maximum control slot value. A value greater than this
is not considered a legal return value.

5
LIST { LIST {
SLOT, NUMERIC,
DATETIME } }

Fixed value(s) the user would like to set in each
hypothetical simulation. Each item in the list is a list itself
containing a slot, the value to set, and the timestep at
which to set it.

6 SLOT
The limit slot, the slot whose value you would like to attain
a certain value.

7 DATETIME
The end limit date/time, the end of the time range during
which you are concerned with the limit slot’s value.

8 NUMERIC
The limit value, the value which you would like the limit slot
to achieve but not exceed during the limiting time range.

9 NUMERIC

The tolerance or desired accuracy of the returned value. If
the function is successful, it indicates that setting the
control slot to the returned value will lead to a maximum
limit slot value which differs by no more than the tolerance
from the desired limit value.

10 NUMERIC

The maximum number of iterations of hypothetical
simulations allowed. If this number is reached without
finding an return value within the tolerance, then the
function fails.

11 NUMERIC

The minimum number of timesteps before and after the
current timestep which might be involved in the simulation.
As part of hypothetical simulation RiverWare makes
copies of the objects in the subbasin and this input is used
to determine how much data should be copied from each
object. One can usually set this value to 0 and RiverWare
will use a heuristic to determine the range over which to
copy data. If this function fails because there was not
enough data on some object, then input a higher value.

Evaluation

There are two conditions in which that function will fail but this function will
return false as the first item in the return list:

• The minimum and maximum control slot values lead to a range of limit values
which does not include the input limit value. In this case the value returned is
the minimum or maximum control slot value, which ever leads to a limit slot
value closest to the input limit value.

• The tolerance is not achieved within the iteration limit. In this case, the value
returned is the current best guess.

If "Hypothetical Simulation" diagnostics are turned on, then if
HypLimitSimWithStatus can not find a satisfying control value, a diagnostic will
be posted describing why it failed to do so.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

99

RPL Predefined Functions
HypTargetSim

99
Syntax Example:

HypLimitSimWithStatus("upper basin", Navajo.Outflow, 10 "cfs", 1000 "cfs",
{{Navajo.Outflow, 1000 "cfs", @"t"}, {FlamingGorge.Outflow, 1000 "cfs", @"t"}},
Powell.Inflow, @"t", 100 "cfs", 0.1 "cfs", 10)

Return Example:

{TRUE, 2.3 "cms", {2.3 "cms", 2.28 "cms"}, {2.83 "cms", 2.83 "cms"}}

100. HypTargetSim

This function finds a value which, when set on a given slot, will lead to a desired value on another slot.

Comments

See also documentation for HypLimitSim for more details; the differences
between these two functions are how problems are dealt with, this function is
more flexible (as described in the Evaluation section).

See also documentation HERE; all comments mentioned there apply here as
well.

Description

Given a control slot and a target slot, target date/time, and target value, this
function uses hypothetical simulation (see description of the predefined
function HypSim) to find a value x such that if the control slot were set to x at
all timesteps in the range [current date, target date], then the target slot’s value
would equal the target value. If the value x exceeds the physical constraint for
that slot at a particular timestep (max outflow on a reservoir for example), then
the constrained value is used instead of the x value for that timestep.

Type NUMERIC

Arguments Type Meaning

1 STRING

The name of the Subbasin over which to perform the
hypothetical simulations. This should include the objects
on which the control and target slot exist as well as all
other objects necessary to compute the target slot’s
value.
If there is no Subbasin with the given name, the string is
taken to be the name of an object and a temporary
Subbasin is created containing only that object.

An error will be issued if this subbasin contains a Data
Object.

2 SLOT
The control slot, the slot with which you desire to control
the target slot’s value.

3 NUMERIC
The minimum control slot value. A value less than this is
not considered a legal return value.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

100

RPL Predefined Functions
HypTargetSim

100
4 NUMERIC
The maximum control slot value. A value greater than this
is not considered a legal return value.

5
LIST { LIST {
SLOT, NUMERIC,
DATETIME } }

Fixed value(s) the user would like to set in each
hypothetical simulation. Each item in the list is a list itself
containing a slot, the value to set, and the timestep at
which to set it.

6 SLOT
The target slot, the slot whose value you would like to
attain a certain value.

7 DATETIME
The target date/time, the timestep at which you would like
the target slot to attain the desired value.

8 NUMERIC
The target value, the value which you would like the target
slot to achieve at the target date/time.

9 NUMERIC

The tolerance or desired accuracy of the returned value. If
the function is successful, it indicates that setting the
control slot to the returned value will lead to a value which
differs by no more than the tolerance from the desired
target value.

10 NUMERIC

The maximum number of iterations of hypothetical
simulations allowed. If this number is reached without
finding an return value within the tolerance, then the
function fails.

11 NUMERIC

The minimum number of timesteps before and after the
current timestep which might be involved in the
simulation. As part of hypothetical simulation RiverWare
makes copies of the objects in the subbasin and this input
is used to determine how much data should be copied
from each object. One can usually set this value to 0 and
RiverWare will use a heuristic to determine the range over
which to copy data. If this function fails because there was
not enough data on some object, then input a higher
value.

Evaluation

In a sense, HypTargetSim is the inverse of HypSim. In particular,

HypTargetSim(basin, control, min, max, targetSlot, targetDate, targetValue,
tolerance, maxIterations) = x

implies that

HypSim(basin,{{targetSlot, t, x}, ..., {targetSlot, targetDate, x}}, {{controlSlot,
targetDate}} = targetValue

The implementation of this function uses an iterative algorithm (the bisection
algorithm) which performs an hypothetical simulation of the subbasin at each
iteration.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

101

RPL Predefined Functions
HypTargetSim

101
Syntax Example:

HypTargetSim("upper basin", Navajo.Outflow, 10 "cfs", 1000 "cfs",
{{Navajo.Outflow, 1000 "cfs", @"t"}}, Powell.Inflow, @"t", 100 "cfs", 0.1 "cfs",
10)

Return Example:

23.4 "cms"

Comments

RiverWare assumes that the target value range (computed using the minimum
and maximum control slot values) includes the target value itself. For example,
if the control slot minimum of 100 cfs leads to a simulated target value of 100
cfs. the control slot maximum of 1000 cfs leads to a simulated target slot value
of 200 cfs, and the target value is 300 cfs, then the function would fail because
the target value is not in the range implied by the input control slot minimum
and maximum values (100-200 cfs). Mathematically, this is the assumption that
target slot’s value is a monotonic function of the control slot’s value.

See also documentation HERE; all comments mentioned there apply here as
well.

HypTargetSim was originally named HypotheticalTargetSimulation.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

102

RPL Predefined Functions
HypTargetSimWithStatus

102
101. HypTargetSimWithStatus

This function finds a value which, when set on a given slot, will lead to a desired value on another slot.
If a value satisfying this criterion is not found, then an attempt is made to find a value that comes close
to doing so.

Description

Given a control slot and a target slot, target date/time, and target value, this
function uses hypothetical simulation (see description of the predefined
function HypSim) to find a value x such that if the control slot were set to x at all
timesteps in the range [current date, target date], then the target slot’s value
would equal the target value. If the value x exceeds the physical constraint for
that slot at a particular timestep (max outflow on a reservoir for example), then
the constrained value is used instead of the x value for that timestep.

A three-item list is returned. The first item in the list is a boolean TRUE value if
a satisfying control slot value was found, FALSE otherwise. If the first item is
TRUE, then the second item is the satisfying control slot value, otherwise this
value is as close as the function could get to finding such a value. The third item
is a list of the control slot values used in the solution. These values will all be
the same as the second item, except if some of the values were constrained
due to physical limitations.

Note: this function is very similar to HypTargetSim: this only difference is that
HypTargetSim fails if it can not find a satisfying control slot value, whereas this
function does not fail, rather it still returns a value, along with the indication that
this value does not achieve the target and the list of control slot values.

Type LIST {BOOLEAN, NUMERIC, LIST}

Arguments Type Meaning

1 STRING

The name of the Subbasin over which to perform the
hypothetical simulations. This should include the objects
on which the control and target slot exist as well as all
other objects necessary to compute the target slot’s value.
If there is no Subbasin with the given name, the string is
taken to be the name of an object and a temporary
Subbasin is created containing only that object.

An error will be issued if this subbasin contains a Data
Object.

2 SLOT
The control slot, the slot with which you desire to control
the target slot’s value.

3 NUMERIC
The minimum control slot value. A value less than this is
not considered a legal return value.

4 NUMERIC
The maximum control slot value. A value greater than this
is not considered a legal return value.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

103

RPL Predefined Functions
HypTargetSimWithStatus

103
5
LIST { LIST {
SLOT, NUMERIC,
DATETIME } }

Fixed value(s) the user would like to set in each
hypothetical simulation. Each item in the list is a list itself
containing a slot, the value to set, and the timestep at
which to set it.

6 SLOT
The target slot, the slot whose value you would like to
attain a certain value.

7 DATETIME
The target date/time, the timestep at which you would like
the target slot to attain the desired value.

8 NUMERIC
The target value, the value which you would like the target
slot to achieve at the target date/time.

9 NUMERIC

The tolerance or desired accuracy of the returned value. If
the function is successful, it indicates that setting the
control slot to the returned value will lead to a value which
differs by no more than the tolerance from the desired
target value.

10 NUMERIC

The maximum number of iterations of hypothetical
simulations allowed. If this number is reached without
finding an return value within the tolerance, then the
function fails.

11 NUMERIC

The minimum number of timesteps before and after the
current timestep which might be involved in the simulation.
As part of hypothetical simulation RiverWare makes
copies of the objects in the subbasin and this input is used
to determine how much data should be copied from each
object. One can usually set this value to 0 and RiverWare
will use a heuristic to determine the range over which to
copy data. If this function fails because there was not
enough data on some object, then input a higher value.

Evaluation

There are two conditions in which that function will fail but this function will
return false as the first item in the return list:

• The minimum and maximum control slot values lead to a range of target val-
ues which does not include the input target value. In this case the value
returned is the minimum or maximum control slot value, which ever leads to a
target value closest to the input target value.

• The tolerance is not achieved within the iteration limit. In this case, the value
returned is the current best guess.

If "Hypothetical Simulation" diagnostics are turned on, then if
HypTargetSimWithStatus can not find a satisfying control value, a diagnostic
will be posted describing why it failed to do so.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

104

RPL Predefined Functions
IntegerToString

104
Syntax Example:

HypTargetSimWithStatus("upper basin", Navajo.Outflow, 10 "cfs", 1000 "cfs",
{{Navajo.Outflow, 1000 "cfs", @"t"}, {FlamingGorge.Outflow, 1000 "cfs", @"t"}},
Powell.Inflow, @"t", 100 "cfs", 0.1 "cfs", 10)

Return Example:

{TRUE, 2.3 "cms", {2.3 "cms", 2.28 "cms"}}

102. IntegerToString

Syntax Example:

IntegerToString(123.456 “cfs”)

Return Example:

“123”

Comments

See also documentation for HypTargetSim for more details; the differences
between these two functions are how problems are dealt with, this function is
more flexible (as described in the Evaluation section).

See also documentation HERE; all comments mentioned there apply here as
well.

Description Returns a string representation of a numeric value interpreted as an integer.

Type STRING

Arguments Type Meaning

1 NUMERIC a value

Evaluation Given a numeric value, IntegerToString returns a string representation of that
value rounded to the nearest integer and with the units removed.

Comments

Note, this function uses the RPL units of the specified NUMERIC. In the
example, below, the RPL units are cfs as it is a literal value. But, if you
reference a slot value, it will return the string using the relevant RPL units,
which are often, but not always, internal units, cms, m, etc...

For more flexibility with units, see “IntegerWithUnitsToString,” HERE.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

105

RPL Predefined Functions
IntegerWithUnitsToString

105
103. IntegerWithUnitsToString

Syntax Example:

IntegerWithUnitsToString(Res.Inflow[], 1.0 “cfs”)

Return Example:

“123”, assuming that the current value on the slot Res.Inflow is 123.9 cfs.

Description Returns a string representation of a numeric value interpreted as an integer
after the specified value is converted to the given units.

Type STRING

Arguments Type Meaning

1 NUMERIC a value to convert and truncate

2 NUMERIC
a value whose units are those to which the first value
should be converted

Evaluation

Given a numeric value, IntegerWithUnitsToString converts that value to the
display units of a second input value, and then returns a string representation
of the converted value with the fractional part of the value and the units
removed.

Comments

It is an error if the two numeric input values do not have compatible units (i.e.,
are not of the same unit type).
Note, for the second argument, only its display units are involved in the
computation; the scalar portion of this value is ignored. This value should
typically be specified as a literal value, not the result of computation or lookup
on a slot, so that the units of this value will be known with certainty.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

106

RPL Predefined Functions
IsControllerRBS

106
104. IsControllerRBS

Syntax Example:

IsControllerRBS()

Return Example:

TRUE or FALSE

105. IsEven

This function returns whether or not a given number is even.

Syntax Example:

IsEven(Puddle.Inflow[], 1.0 [cfs])

Return Example:

TRUE or FALSE

Description Returns true if and only if the current controller is Rulebased Simulation (RBS)
or Inline Rulebased Simulation and Accounting.

Type BOOLEAN

Arguments Meaning

Evaluation

Comments

Description Returns true if and only if the input value (rounded down) is even.

Type BOOLEAN

Arguments Type Meaning

1 NUMERIC a value

2 NUMERIC the units in which to determine evenness.

Evaluation Converts the value into the desired units, rounds down to the nearest integer,
then returns whether or not this value is even.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

107

RPL Predefined Functions
IsInput

107
106. IsInput

This function evaluates whether there is an input value on the given slot at the given datetime.

Syntax Example:

IsInput(SanJuanData.Mexico Call, @"t")

Return Example:

TRUE or FALSE

107. IsOdd

This function returns whether or not a given number is odd.

Description The input status of a slot at a given datetime.

Type BOOLEAN

Arguments Type Meaning

1 SLOT the series slot

2 DATETIME the datetime

Evaluation

The datetime argument; which may be specified symbolically, is converted into
an actual datetime. Then, the flag of the value in the series slot at that time is
compared with the user input flags. If the flag is an “I” or “Z”, true is returned.
An “i” is considered a user input within an iterative MRM run, but not a user
input within a single run or outside of a run. The “R” flag is not considered an
input.

Also, IsInput returns false if the slot[datetime] is NaN. But, this function does
NOT terminate the executing rule if the value at the given datetime is a NaN.

See also the similar yet more general function: HERE (HasFlag).

Description Returns true if and only if the input value (rounded down) is odd.

Type BOOLEAN

Arguments Type Meaning

1 NUMERIC a value

2 NUMERIC the units in which to determine oddness.

Evaluation Converts the value into the desired units, rounds down to the nearest integer,
then returns whether or not this value is odd.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

108

RPL Predefined Functions
LeapYear

108
Syntax Example:

IsOdd(Puddle.Inflow[], 1.0 [cfs])

Return Example:

TRUE or FALSE

108. LeapYear

This function evaluates whether a given date occurs in a leap year.

Syntax Example:

LeapYear(@"t")

Return Example:

TRUE or FALSE

109. ListDownstreamObjects

Creates a list of linked downstream objects that are between two specified objects.

Comments

Description
Whether or not a given datetime is in a leap year (containing 366 days instead
of 365).

Type BOOLEAN

Arguments Type Meaning

1 DATETIME the datetime

Evaluation
The datetime argument; which may be specified symbolically, is converted into
an actual datetime. If the date of this year is a leap year, true is returned,
otherwise false.

Comments

Description This function evaluates to a list of linked downstream objects that are between
two specified objects, inclusive.

Type LIST {OBJECT}

Arguments Type Meaning
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

109

RPL Predefined Functions
ListDownstreamObjects

109
Syntax Example:

ListDownstreamObjects(%”Barker”, %”Boulder”)

Return Example:

{%”Barker”,
 %”BarkerOut”,
 %”BoulderCreek:Routing”,

1 OBJECT The upstream object at which to start the search

2 OBJECT The downstream object at which to finish the search

Evaluation
ListDownstreamObjects searches links downstream from the first object until it
finds the second object. It returns a list of all objects that it finds, inclusive of
the specified objects.

Comments

Notes / Limitations to this function:

• To find the next downstream object, the function traverses links from main
channel outflow slots. These slots typically include Outflows from each object;
the table below shows the main channel outflow slot for each object

• If a Bifurcation or Pipe Junction has more than one outflow link, an error is
issued.

• Object 1 must be upstream of Object 2. That is, if Object 2 is not found in the
search, an error is issued.

• For Aggregate Reaches and Agg Distribution canals, only the elements are
returned, not the aggregate (but each element includes the agg name, E.g.
%“AggReach:Element1”).

Object Type Main channel outflow slot(s)
Agg Diversion Site Total Outflow
Agg Distribution Canal Total Return Flow
Agg Reach,
Confluence,
Control Point,
Distribution Canal,
Groundwater,

Inline Power,
Inline Pump,
Pipeline,
Reach,
Reservoir

Outflow

Bifurcation Outflow1, Outflow2
Diversion Object, NONE
Pipe Junction Flow 1, Flow 2
Stream Gage Gage Outflow

Water User NONE
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

110

RPL Predefined Functions
ListSlotSet

110
 %”BoulderCreek:Locals”,
 %”Boulder”}

110. ListSlotSet

This function evaluates to a list of the slots in a given Slot Set.

Description The slots in the given Slot Set.

Type LIST {SLOTS}

Arguments Type Meaning

1 STRING The name of a Slot Set defined in the model.

Evaluation The Slot Sets in the model are searched for a match to the given string. Then,
a list is generated from the member slots of that set.

Comments

Both static and dynamic Slot Sets may be referenced. Dynamic Slot Sets are
resolved when the function is called. Member slots are listed in the order in
which they appear in the Slot Set Manager dialog (from the Workspace, use
the Workspace->Slots->Slot Set Management...). If there is no Slot Set with
the given name in the model, this function aborts the run with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

111

RPL Predefined Functions
ListSubbasin

111
Syntax Example:

1. ListSlotSet("AllResOutflows")
2. ListSlotSet("My Special Slots")

Return Example:

1. {"Mead.Outflow", "Powell.Outflow", "Havasu.Outflow"}
2. {"BigRes.MySlot", "Small Res.Trigger", "RedRiver.Seepage"}

111. ListSubbasin

This function evaluates to a list of the objects in a given subbasin.

Syntax Example:

ListSubbasin("LevelPowerReservoir")
ListSubbasin("Colorado above GJ")

Return Example:

{%"Mead", %"Powell", %"Havasu"}

112. Ln

This function evaluates to the natural logarithm of the given number.

Description The objects in the given subbasin.

Type LIST {OBJECT}

Arguments Type Meaning

1 STRING the name of the subbasin

Evaluation
The list of subbasins in the model is searched for a match to the given string.
Then, a list is generated from the member objects of that subbasin.

Comments

Both predefined and user defined subbasins may be referenced. Member
objects are listed in the order in which they appear in the Edit Subbasins
dialog. If there is no subbasin with the given name in the model, this function
aborts the run with an error.

Description The natural logarithm of a number.

Type NUMERIC

Arguments Type Meaning
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

112

RPL Predefined Functions
Log

112
Syntax Example:

Ln(1.0 "cfs", 0.0 "cms")

Return Example:

-3.56429837 "cms"

113. Log

This function evaluates to the base10 logarithm of the given number.

1 NUMERIC the value

2 NUMERIC the units in which to compute the logarithm

Evaluation
Converts the value into the desired units, and then computes the natural
logarithm of this value. The solution is this number in the units of the
converted value.

Comments

The natural logarithm may only be evaluated for values greater than zero.
This function aborts the run with an error, if it is evaluated with a value less
than or equal to zero.

The two arguments must have compatible units, otherwise the run is aborted
with an error.

Note that this function does not use the scalar portion of the units argument.

Description The base10 logarithm of a number.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the value

2 NUMERIC the units in which to compute the logarithm

Evaluation
Converts the value into the desired units, and then computes the base 10
logarithm of this value. The solution is this number in the units of the
converted value.

Comments

The base10 logarithm may only be evaluated for values greater than zero.
This function aborts the run with an error, if it is evaluated with a value less
than or equal to zero.

The two arguments must have compatible units, otherwise the run is aborted
with an error.

Note that this function does not use the scalar portion of the units argument.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

113

RPL Predefined Functions
Max

113
Syntax Example:

Log(100.0 "cfs", 0.0 "cms")

Return Example:

0.45204489 "cms"

114. Max

This function evaluates to the greater of its two arguments.

Syntax Example:

Max(100"cfs", 10"cms") = 10.000 "cms"
Max(Powell.Storage[], Mead.Storage[]) = 1233481837.55 "m3"

115. MaxItem

This function evaluates to the greatest number in a given list.

Description The greater value.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the first value

2 NUMERIC the second value

Evaluation
The two numbers are converted to a common unit and compared. The greater
of the two numbers is returned.

Comments
If the values are of a different unit type, this function aborts the run with an
error.

Description The greatest value.

Type NUMERIC

Arguments Type Meaning

1 LIST the list of values

Evaluation The numbers in the input list are converted to a common unit and compared.
The greatest number is returned.

Comments If the list is empty, one of the items is not numeric, or they do not all have
compatible types, this function aborts the run with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

114

RPL Predefined Functions
MaxObjectsAggregatedOverTime

114
Syntax Example:

MaxItem({100"cfs", 10"cms", 50 [cfs]})

Return Example:

10.00 "cms"

116. MaxObjectsAggregatedOverTime

This function returns a single numeric value which is the largest of several objects’ aggregated slot
values. The objects’ slot values may be aggregated as a SUM, AVG, MIN, or MAX over a specified time
range.

Description The largest of several object’s values, each of which is the result of aggregating
a slot’s values over time.

Type LIST

Arguments Type Meaning

1 STRING subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start date

7 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the subbasin
argument for slots which match the slot name argument. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW
unit type, the values are multiplied by their corresponding timestep length to
convert them to values of the unit type VOLUME.

Next, each slot’s values are aggregated according to the aggregation function
argument over the time range of the datetime arguments. During each of these
slot aggregations, any values which do not satisfy the aggregation filter
argument are ignored.

Finally, the largest of the objects’ aggregated slot values is determined. This
value is returned as the first value in a list. If there is a date/time associated with
this value, it is returned as the second value in the list. This will be the case if
the "MIN" or "MAX" aggregation function is specified for the fifth argument.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

115

RPL Predefined Functions
MaxObjectsAtEachTimestep

115
Syntax Example:

MaxObjectsAggregatedOverTime("upper basin", "Inflow", "MAX","ALL", TRUE
@"October, Previous Year",
@"September, Current Year")

Return Example:

324.3 "cms"

117. MaxObjectsAtEachTimestep

This function evaluates to a list. Each item of the list is a list comprised of the datetime at which the
largest value was determined, and the value itself.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values is
not FLOW, this function aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the "SUM"
aggregation function yields an aggregated value of 0.0 for that slot, while the
"AVG", "MIN", and "MAX" aggregation functions abort RiverWare with an error.

Description The largest of several object’s slot values for each timestep in a range.

Type LIST{LIST{DATETIME, NUMERIC}}

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start date

6 DATETIME end date

Max AggFunction obj() obj.slotname()[]t from start to end()∀[]obj in subbasin()∀()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

116

RPL Predefined Functions
MaxTimestepsAggregatedOverObjects

116
Syntax Example:

MaxObjectsAtEachTimestep("upper basin", "Storage", "ALL", FALSE
@"October, Previous Year",
@"September, Current Year")

Return Example:
For a monthly model, the above function would return something like:

{ { 24:00 October 31, 1996, 1233232.2 "m3" },
 { 24:00 November 30, 1996, 1067478.3 "m3" },

 { 24:00 September 30, 1997, 1563456.7 "m3" } }

118. MaxTimestepsAggregatedOverObjects

This function evaluates to a single numeric value, which is the largest value resulting from aggregating
several objects’ slot values at each timestep.

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values whose maximum to
find are of the FLOW unit type, the values are multiplied by their
corresponding timestep length to convert them to values of the unit type
VOLUME.

Next, all of the object’s slot values are compared, yielding one maximum
value for each timestep in the time range of the datetime arguments. The
function returns a list of two items, where the first and second items of the
inner lists are the datetime and the largest value, respectively.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

Description
Largest over a timeseries of values, each of which is the result of
aggregating several objects’ slot values.

Type LIST

Arguments Type Meaning

t Max obj.slotname[]obj in subbasin()∀(){ , }[]t from start to end()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

117

RPL Predefined Functions
MaxTimestepsAggregatedOverObjects

117
Syntax Example:

MaxTimestepsAggregatedOverObjects("upper basin","Storage","MAX","ALL",
FALSE, @"October, Previous Year",
@"September, Current Year")

Return Example:

{@"March 31, 2004", 2342343232.32"m3", %"Res1"}

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start datetime

7 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values to be aggregated are
of the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, all of the objects’ slot values are aggregated according to the
aggregation function argument for each timestep in the time range of the
datetime arguments. During each of these slot aggregations, any values
which do not satisfy the aggregation filter argument are ignored.

Finally, the largest value in the timeseries of object aggregated slot values is
determined. This value is returned as the second value in a list. The first
item is the date/time associated with this value. If there is an object
associated with the value, it is returned as the third value in the list. This will
be the case if the "MIN" or "MAX" aggregation function is specified for the
third argument.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

Max AggFunction t() obj.slotname()[]obj in subbasin()∀[]t from start to end()∀()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

118

RPL Predefined Functions
MaxTimestepsForEachObject

118
119. MaxTimestepsForEachObject

This function evaluates to a list. Each item of the list is a list comprised of the object name, and the
largest value of the slot on that object for the time range specified.

Syntax Example:

MaxTimestepsForEachObject("upper basin", "Inflow", "ALL", TRUE,
@"October, Previous Year",
@"September, Current Year")

Return Example:

{ {%"Res1", 12.23"cms"}, {%"Reach2", 4.92 "cms"}, {%"Res2", 23.2 "cms"} }

Description Largest value in a slot over a time range, for each object in a subbasin.

Type LIST {LIST {OBJECT, NUMERIC}}

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start datetime

6 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. For each object,
the largest slot value over every timestep in the range of the datetime
arguments is determined. Any values which do not satisfy the aggregation
filter argument are ignored during the calculation. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW
unit type, the values are first multiplied by their corresponding timestep
length to convert them to values of the unit type VOLUME.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, this function aborts the run with an error. If none of the
values for a slot satisfy the aggregation filter argument, this function also
aborts RiverWare with an error.

obj Max obj.slotname[]t from start to end()∀(){ , }[]obj in subbasin()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

119

RPL Predefined Functions
MeetLowFlowRequirement

119
120. MeetLowFlowRequirement

This function computes the necessary Low Flow Releases from contributing reservoirs to meet a low
flow requirement at a specified control point.

Description
Computes the Low Flow Release from each reservoir so that the low flow
requirement at the specified control point is met.

Type LIST{ LIST{Slot, Value, Object}}

Arguments Type Meaning

1 STRING The subbasin used to perform the calculations

2 OBJECT
The control point whose low flow requirement needs to
be met
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

120

RPL Predefined Functions
MeetLowFlowRequirement

120
Evaluation

Returns a LIST of LISTs with the inner list containing a triplet. Each triplet is
a slot (at index zero), the value to set on that slot (at index one), and the
object of the slot (at index two). The function returns each Low Flow
Release slot and the value to set on that slot. Also, the Outflow slot for each
reservoir is returned with the new outflow value (Outflow plus Low Flow
Release).

The function computes the release for each contributing reservoir. The
contributing reservoirs are specified in a slot called Low Flow Reservoirs on
the Control Point.

The rule executes as follows: First, the specified low flow reservoirs are
sorted in descending order according to Operating Level. Reservoirs that
are below the bottom of the conservation pool are excluded. Next, each
reservoir (beginning with the most full reservoir) makes a release until the
requirement (in the Computed Low Flow Requirement slot on the Control
Point) is met, the Maximum Low Flow Delivery Rate (on the reservoir) is
met, or the reservoir reaches the bottom of the conservation pool
(whichever value is lowest). In addition, as each reservoir is making
releases, the function calls the getMaxOutflowGivenInflow function to
calculate the maximum flow that can be released from the reservoir. If the
calculated low flow release is greater than this max, the release is reduced
to the max.

The Low Flow Release and updated Outflow value (limited by max
constraints) for each reservoir is returned by the RPL function to the calling
rule. The rule sets these slots using the syntax given below. After the rule
executes, the system solves and routes the values downstream.

NOTE: Each time this rule function is evaluated, it adds to the existing value
in the Low Flow Release slot on reservoir objects. This is because each
reservoir may contribute to the low flow requirement of more than one
control point. So if the user wants to recompute all the low flow releases,
they must all be reset to zero. In other words, this function is designed to
execute once for each control point, adding to the Low Flow Releases made
for previous control points.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

121

RPL Predefined Functions
MeetLowFlowRequirement

121
Syntax Example:

MeetLowFlowRequirement("Basin") where "Basin" contains Res1, Res2, and CP1.

Return Example:

{ {"Res1.Low Flow Release", 9.75 "cms", "Res1"},
 {"Res1.Outflow", 9.75 "cms", "Res1"},
 {"Res2.Low Flow Release", 2.35 "cms", "Res2"}
 {"Res2.Outflow", 3.25 "cms", "Res2"} }

Use Examples:

FOR EACH (LIST result IN MeetLowFlowRequirement("Basin", %"CP1")) DO
 (result<0>)[] = result<1>
END FOR EACH

Comments

A rule needs to be created for each Control Point that has a low flow
requirement. Each rule will call the MeetLowFlowRequirement function for
the specified Control Point. After simulating the new releases, the next rule
will be executed for the next low flow Control Point.

The specified subbasin needs to include all the relevant objects (reservoirs,
control points). Within the function execution, no routing of low flow releases
is considered between the reservoir and the control point. But, during the
simulation after the rule finishes, routing is considered. As a result, the
water released may not make it to the control point on a single timestep.

Each reservoir must have the Conservation and Flood Pools method
selected in the Operating Levels category.

The reservoirs specified in the Low Flow Reservoirs slot on each control
point MUST be upstream of the control point. RiverWare does not check
this and the results will be incorrect if the user does not enforce this. Also,
no tandem operations are considered by this RPL function, i.e. the function
assumes that reservoir releases can travel directly to a control point without
passing through another reservoir.

Use of this function for USACE-SWD: HERE (USACE_SWD.pdf, Section 3.7).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

122

RPL Predefined Functions
MemoryUsage

122
121. MemoryUsage

Syntax Example:

MemoryUsage() returns 72,212

122. Min

This function evaluates to the smaller of its two arguments.

Syntax Example:

Min(100"cfs", 10"cms") returns 100 "cfs"
Min(Powell.Storage[], Mead.Storage[]) returns 12236343.55 "m3"

Description Returns the RiverWare process’s current virtual memory usage, in kilobytes
(KB).

Type NUMERIC

Arguments Type Meaning

Evaluation

Comments This function can be useful for performance analysis, for example to identify
which rules in a rulebased simulation use the most memory.

Description The lesser value.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the first value

2 NUMERIC the second value

Evaluation The two numbers are converted to a common unit and compared. The
lesser of the two numbers is returned.

Comments If the values are of a different unit type, this function aborts the run with an
error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

123

RPL Predefined Functions
MinItem

123
123. MinItem

This function evaluates to the least number in a given list.

Syntax Example:

MinItem({100"cfs", 10"cms", 50 [cfs]})

Return Example:

50.0 [cfs]

124. MinObjectsAggregatedOverTime

This function returns a single numeric value which is the smallest of several objects’ aggregated slot
values. The objects’ slot values may be aggregated as a SUM, AVG, MIN, or MAX over a specified time
range.

Description The smallest value.

Type NUMERIC

Arguments Type Meaning

1 LIST the list of values

Evaluation The numbers in the input list are converted to a common unit and compared.
The smallest number is returned.

Comments If the list is empty, one of the items is not numeric, or they do not all have
compatible types, this function aborts the run with an error.

Description The smallest of several object’s values, each of which is the result of
aggregating a slot’s values over time.

Type LIST{NUMERIC, DATETIME}

Arguments Type Meaning

1 STRING subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start date
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

124

RPL Predefined Functions
MinObjectsAtEachTimestep

124
Syntax Example:

MinObjectsAggregatedOverTime("upper basin", "Inflow", "MAX","ALL", TRUE
@"October, Previous Year",
@"September, Current Year")

Return Example:

{0.24 "cms", @"February 3, 2003"}

125. MinObjectsAtEachTimestep

This function evaluates to a list. Each item of the list is a list comprised of the datetime at which the
smallest value was determined and the value itself.

7 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values to be aggregated are
of the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, each slot’s values are aggregated according to the aggregation
function argument over the time range of the datetime arguments. During
each of these slot aggregations, any values which do not satisfy the
aggregation filter argument are ignored.

Finally, the smallest of the objects’ aggregated slot values is determined.
This value is returned as the first value in a list. If there is a date/time
associated with this value, it is returned as the second value in the list. This
will be the case if the "MIN" or "MAX" aggregation function is specified for
the third argument.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, this function aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

Description The smallest of several object’s slot values, for each timestep in a range.

Type LIST{LIST{DATETIME, NUMERIC}}

Min AggFunction obj() obj.slotname()[]t from start to end()∀[]obj in subbasin()∀()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

125

RPL Predefined Functions
MinObjectsAtEachTimestep

125
Syntax Example:

MinObjectsAtEachTimestep("upper basin", "Storage", "ALL", FALSE
@"October, Previous Year",
@"September, Current Year")

Return Example:
For a monthly model, the above function would return something like:

{ { 24:00 October 31, 1996, 1232.2 "m3" },
 { 24:00 November 30, 1996, 1074.3 "m3" },

 { 24:00 September 30, 1997, 1564.0 "m3" } }

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start date

6 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values whose maximum to find
are of the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, all of the object’s slot values are compared, yielding one minimum value
for each timestep in the time range of the datetime arguments. The function
returns a list of two items, where the first and second items of the inner lists
are the datetime and the smallest value, respectively.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values
is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

t Min obj.slotname[]obj in subbasin()∀(){ , }[]t from start to end()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

126

RPL Predefined Functions
MinTimestepsAggregatedOverObjects

126
126. MinTimestepsAggregatedOverObjects

This function evaluates to a single numeric value which is the smallest value resulting from aggregating
several objects’ slot values at each timestep.

Description
Smallest over a timeseries of values, each of which is the result of aggregating
several objects’ slot values.

Type LIST

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start datetime

7 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW
unit type, the values are multiplied by their corresponding timestep length to
convert them to values of the unit type VOLUME.

Next, all of the objects’ slot values are aggregated according to the aggregation
function argument for each timestep in the time range of the datetime
arguments. During each of these slot aggregations, any values which do not
satisfy the aggregation filter argument are ignored.

Finally, the smallest value in the timeseries of object aggregated slot values is
determined. This value is returned as the second value in a list. The first item is
the date/time associated with this value. If there is an object associated with the
value, it is returned as the third value in the list. This will be the case if the "MIN"
or "MAX" aggregation function is specified for the third argument.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values is
not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the "SUM"
aggregation function yields an aggregated value of 0.0 for that slot, while the
"AVG", "MIN", and "MAX" aggregation functions abort RiverWare with an error.

Min AggFunction t() obj.slotname()[]obj in subbasin()∀[]t from start to end()∀()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

127

RPL Predefined Functions
MinTimestepsForEachObject

127
Syntax Example:

MinTimestepsAggregatedOverObjects("upper basin","Storage","MAX","ALL",
FALSE, @"October, Previous Year",
@"September, Current Year")

Return Example:

{ @"March 31, 2001", "0.23"cms", %"Res1"}

127. MinTimestepsForEachObject

This function evaluates to a list. Each item of the list is a list comprised of the object name and the
smallest value of the slot on that object for the time range specified.

Description Smallest value in a slot over a time range, for each object in a subbasin.

Type LIST {LIST {OBJECT, NUMERIC}}

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start datetime

6 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. For each object,
the smallest slot value over every timestep in the range of the datetime
arguments is determined. Any values which do not satisfy the aggregation
filter argument are ignored during the calculation. If the time conversion
option argument is TRUE, and the values to be aggregated are of the FLOW
unit type, the values are first multiplied by their corresponding timestep
length to convert them to values of the unit type VOLUME.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, this function aborts the run with an error. If none of the
values for a slot satisfy the aggregation filter argument, this function also
aborts RiverWare with an error.

obj Min obj.slotname[]t from start to end()∀(){ , }[]obj in subbasin()∀
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

128

RPL Predefined Functions
Mod

128
Syntax Example:

MinTimestepsForEachObject("upper basin", "Inflow", "ALL", TRUE,
@"October, Previous Year",
@"September, Current Year")

Return Example:

{ {%"Res1", 0.0"cms"}, {%"Reach2", 0.02 "cms"}, {%"Res2", 3.2 "cms"} }

128. Mod

This function computes the integer modulus of two numbers.

Syntax Example:

Mod(3.9 "m", 0.0 "ft", 5.0 "sec", 0.0 "sec")

Return Example:

2.0

Description Integer modulus of two numbers.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the numerator

2 NUMERIC the units to which to convert the numerator

3 NUMERIC the denominator

4 NUMERIC the units to which to convert the denominator

Evaluation

Converts numerator and denominator into the specified units, then returns
the integral modulus of the converted values, where integral modulus of x and
y returns the integral remainder after integral division of x and y, which can be
defined as:

Comments

If the denominator is equal to zero, the run is aborted with an error.
Each of the units arguments must have units which are compatible with the
value they are associated with, otherwise the run is aborted with an error.

Note that this function does not use the scalar portion of either of the units
arguments.

Mod x y,() y≡ x
y

--------- x
y

---------– 
 ⋅
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

129

RPL Predefined Functions
NetNonShortDiversionRequirement

129
129. NetNonShortDiversionRequirement

This function computes the diversion required to satisfy all of Water Users’ requests in an Aggregate
Diversion Site.

Description Minimum diversion required to meet all Water Users’ requests.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the aggregate diversion site or diversion object

2 DATETIME the timestep

Evaluation

If the object is an Aggregate Diversion Site and is linked with the No Structure
or Lumped Structure, this function evaluates to the current value of the Total
Diversion Requested slot.

If the object is an Aggregate Diversion Site and if the Aggregate Diversion Site
is linked with the Sequential Structure, the function sets a total diversion
requirement equal to the topmost Water User’s Diversion Requested and
then loops over the remaining Water Users. The water available at each
element is calculated based on the upstream elements’ diversions and their
return flows. If this water is enough to satisfy the Water User’s Diversion
Requested, the total diversion requirement is not modified. If this water is not
enough to satisfy the Water User’s Diversion Requested, the total diversion
requirement is increased to satisfy this Water User.

If the object is a diversion object, this function evaluates to the current value of
the Diversion Request slot. Note, the diversion object cannot use the Percent
of Available method.

Mathematical
Expression

For sequential agg diversion sites:

Max

 DivReq WU() DivReq
Upstream WU
 ReturnFlow

Upstream WU
–+

WU in Agg()

∀(

)

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

130

RPL Predefined Functions
NetSubbasinDiversionRequirement

130
Syntax Example:

NetNonShortDiversionRequirement(%"CAP Diversion", @"t")

Return Example:

9.25 "cms"

130. NetSubbasinDiversionRequirement

This function computes the inflow to a subbasin required to satisfy all diversions in the subbasin while
meeting minimum flow requirements below all diversion points.

Comments

This function exits with an early termination if any of the required data used to
solve the diversion is unknown. The required data is the same as that needed
for the objects to fully dispatch, except Total/Incoming Available Water,
which need not be known. For sequentially linked Agg Diversion Sites, the
function takes into account whether Return Flow, or Surface Return Flow are
linked to another object, or unlinked and available to the next Water User in
the diversion.

Description Minimum Inflow required to meet all diversion requests and minimum flows.

Type NUMERIC

Arguments Type Meaning

1 LIST
the subbasin’s Reach and Confluence objects in
downstream order

2 DATETIME the timestep at which to calculate
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

131

RPL Predefined Functions
NetSubbasinDiversionRequirement

131
Evaluation

The subbasin diversion requirement is originally set to zero. Each of the
objects in the subbasin list is processed in the downstream order they are
provided in. If the object is a Reach, the following calculations are performed:

• If an Aggregate Diversion Site or Diversion Object is linked to the Reach’s
Diversion slot, the NetNonShortDiversionRequirement function is
executed on the diversion. If a water user is linked, then the Water User’s
Diversion Request is used. This step determines the diversion request
from the Reach.

• The Reach’s minimum flow just below the diversion point is determined
from the Reach’s Minimum Diversion Bypass slot. If this slot does not exist
because of the selected User Method in the Min Diversion Bypass
category, the minimum flow requirement is zero.

• If nothing is linked to the Diversion slot, but a value exists in the slot, this
value is assumed to be the diversion requirement for this reach. In this
case, there is no minimum flow requirement below the diversion point.

• The subbasin diversion requirement is recalculated as the greater of the
previous subbasin diversion requirement or the Reach diversion
requirement plus the minimum flow requirement plus any cumulative
upstream diversions minus any cumulative upstream return flows minus
any cumulative upstream tributary inflows.

• Any Local Inflow to the Reach is added to the cumulative tributary inflows.

• If the Return Flow slot has a valid value, it is added to the cumulative
return flows. If the Return Flow slot does not have a valid value, but a
Water User or an Aggregate Diversion Site object is linked to it, the return
flow is estimated. Return flow is estimated by subtracting the object’s
(Total) Depletion Requested from its (Total) Diversion Requested. The
estimated return flow is then added to the cumulative return flows.

If the object is a Confluence, the Inflow1 and Inflow2 slots are checked to
determine which is the main subbasin flow, and which is the tributary inflow.
The objects linked to the inflow slots are checked against the last Reach
object to be processed. When a match is found, the other Inflow, if valid, is
added to the cumulative tributary inflows.

The loop continues until all objects in the list have been processed. The
largest subbasin diversion requirement calculated at any diversion point is the
total subbasin diversion requirement.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

132

RPL Predefined Functions
NetSubbasinDiversionRequirement

132
Syntax Example:

NetDiversionRequirement({%"La Plata",%"Hesperus", %"Pine Ridge"},
 @"t")

Return Example:

9.25 "cms"

Mathematical
Expression

Comments

This function exits its calling rule with an early termination if any of the
required data used to solve the diversions are unknown.

The required data is the same as that needed for the
NetNonShortDiversionRequirement predefined function for each Aggregate
Diversion Site along the subbasin.

This function aborts the run with an error if an object other than a Reach or
Confluence is in the subbasin list.

One of the Confluence Inflows must be linked to the previous Reach object
upstream, or an Aggregate Reach which contains the previous Reach object
upstream as its last element. If this condition is not met, the Confluence
cannot determine which slot is the tributary inflow and the function aborts the
run with an error. All subbasin diversion requirement calculations are
performed at the given timestep. Subbasin diversion requirement will not be
correct if there are lags in Reaches. This predefined function is recommended
for use in long timestep models or for subbasins where there is no lag
between top and bottom.

Max Reach in subbasin∀()

NetNonShortDiversionRequirement AggDivSite()

minimum flow Reach() Diversion
Upstream Reach



Return Flow Tributary Inflow
Upstream Reach Confluence,

–

Upstream Reach
–

++
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

133

RPL Predefined Functions
NextDate

133
131. NextDate

Returns the next date which matches a partially specified date.

Syntax Example:

NextDate(@"t", @"March")
returns: 24:00 March 31, 1995
(assuming the current timestep is any date between March, 1994 and March, 1995)
NextDate(@"24:00 February 28, 1995", @"March")
returns: 24:00 March 31, 1995
NextDate(@"24:00 May 10, 1995", @"March 20")
returns: 24:00 March 20, 1996
NextDate(@"24:00 February 28, 1994", @"MAX DayOfMonth")
returns: February 28, 1994
NextDate(@"24:00 February 28, 1994", @"Tuesday")
returns: 24:00 March 1, 1994
NextDate(@"24:00 February 28, 1994", @"6:00 MAX DayOfYear")
returns: 6:00 December 31, 1994
NextDate(@"24:00 February 28, 1994", @"6:00")
returns: 6:00 March 1, 1994
NextDate(@"", @"") (returns:)

Description Resolves a partially specified date/time into the next (with respect to a
reference date) date/time which matches the specified fields.

Type DATETIME

Arguments Type Meaning

1 DATETIME a reference date/time.

2 DATETIME a partially specified date/time.

Evaluation

The unspecified fields with a coarser resolution are resolved into the
future with respect to the reference date. If there are finer resolution
fields, they are filled in with default values (e.g., time with 24:00, day of
the month with the last day of the month). Note that if the partial date can
be resolved into the current date, it is. See the "Syntax Examples" section
below for some examples.

Comments If the reference date/time is not fully specified or if the partial date/time is,
then the run is aborted with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

134

RPL Predefined Functions
NumberToDate

134
132. NumberToDate

Syntax Example:

NumberToDate(Data.PriorityDate[])

Return Example:

The above call might return @"January 12" if the Data.PriorityDate slot has units "MonthAndDate".

Use Examples:

This function should be used in conjunction with Dates on Series slots HERE (Slots.pdf, Section 5) and
the DateToNumber function HERE (DateToNumber). A specific use example is shown HERE (Slots.pdf,
Section 5.3).

Description Given a numeric encoding of a date/time, returns the corresponding date/
time value.

Type DATETIME

Arguments Type Meaning

1 NUMERIC The numeric encoding of a date/time value.

Comments

Slots representing date/time values have unit type DateTime. Internally
these values are represented as numbers although the interface displays
them as date/times. Looking up a value on such a slot will retrieve the
numeric encoding, this function converts that number to a date/time value
as required to treat it as a date within policy. If the unit for the slot
corresponds to a partially specified date/time format, then the result will a
partially specified date/time value.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

135

RPL Predefined Functions
NumberToYear

135
133. NumberToYear

Syntax Example:

NumberToYear(2013.987 “s”)

Return Example:

@“Year 2013”

134. NumColumns/NumRows

Syntax Example:

NumRows($"Data.MyTable") = 3

Description Given a numeric value, NumberToYear returns a DATETIME with only the
year.

Type DATETIME

Arguments Type Meaning

1 NUMERIC A number.

Evaluation NumberToYear truncates the specified numeric value and returns the value
as a year DATETIME.

Description Returns the number of columns/rows in a table slot or periodic slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT a table or periodic slot.

Comments If the slot is not a table or periodic slot, the run is aborted with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

136

RPL Predefined Functions
ObjAcctSupplyByWaterTypeRelTypeDestType

136
135. ObjAcctSupplyByWaterTypeRelTypeDestType

Syntax Example:

Description

This function finds a list of objects, accounts and supplies that match the
given arguments. It returns a list of triplets{ OBJECT object, STRING
account, STRING supply }, where the object^account is served by the
supply, and the object is in the given subbasin (argument 1), the supply
has the given release type and destination type (arguments 3 and 4), and
the supplying account (upstream end of the supply in the returned triplet)
has the given water type (argument 2).

Type LIST (LIST { OBJECT, STRING, STRING })

Arguments Type Meaning

1 STRING The name of the subbasin in which to search.

2
STRING

The water type of the upstream end of the supplies
returned. The string "ALL" means that any water type
will satisfy this filter. The string "NONE" means that
only supplying accounts lacking a water type will
satisfy this filter.

3
STRING

The release type of the supply returned. The string
"ALL" means that any release type will satisfy this
filter. The string "NONE" means that only supplies
lacking a release type will satisfy this filter.

4
STRING

The destination type of the supplies returned. The
string "ALL" means that any destination type will
satisfy this filter. The string "NONE" means that only
supplies lacking a destination type will satisfy this
filter.

Comments

This function is meant to be used in conjunction with the water rights
solvers (SolveWaterRights()). It looks for supplies that are "appropriation
points" for legal water accounts as defined for the water rights solver. In
the solver, these supplies are identified by the water type of the account at
the point of appropriation. Usually these supplies directly supply the
object^account in the returned triplets. The one exception to this is when
the supply serves an offstream reservoir. In this case, the offstream
reservoir is supplied through a diversion object, and so a passthrough
account on the diversion object sits between the point of diversion and the
receiving object^account. This is the only case in which any indirection is
detected, and the function looks two hops upstream to check the
supplying account’s water type. In all other cases, the function looks only
one hop upstream.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

137

RPL Predefined Functions
ObjectAttributeValue

137
ObjAcctSupplyByWaterTypeRelTypeDestType("WRA", "MyWT", "MyRel", "MyDest")

Return Example:

{ {"Res1", "Farmer1", "Res1 Farmer1 Diversion to Farmer1 Diversion"},
 {"Res1", "Farmer2", "Res1 Farmer2 Diversion to Farmer2 Diversion"} }

136. ObjectAttributeValue

Syntax Example:

ObjectAttributeValue(%"Dolores", "State")

Return Example:

"Colorado"

Description For the specified Object and a string representing an attribute, return the
value for that particular Object, as a string

Type STRING

Arguments Type Meaning

1 OBJECT The Object

2 STRING The name of the Attribute

Evaluation

Comments
If the attribute is not found on the object, an error is issued.

If the object or attribute is not found in the model, an error will be issued.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

138

RPL Predefined Functions
ObjectHasAttributeValue

138
137. ObjectHasAttributeValue

Syntax Example:

ObjectHasAttributeValue(%"Dolores", "State", "Colorado")

Return Example:

TRUE

138. ObjectiveValue

Syntax Example:

ObjectiveValue()

Return Example:

12.23

Description Return whether the particular Object has the specified Attribute Value.

Type BOOLEAN

Arguments Type Meaning

1 OBJECT The Object

2 STRING The name of the Attribute

3 STRING The Value of the Attribute.

Evaluation When evaluated, the function looks at the particular object and checks to
see if it has the given Attribute and Value.

Comments

If the attribute or value is not found on the object, FALSE is returned.

If the object, attribute or value is not found in the model, an error will be
issued.

Description Returns the objective value from the last successful solution to the
Optimization problem.

Type NUMERIC

Arguments Type Meaning

Comments If there is no solution information available (e.g., if an Optimization run
has not occurred), the run is aborted with an error diagnostic.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

139

RPL Predefined Functions
ObjectsFromAccountName

139
139. ObjectsFromAccountName

Syntax Example:

ObjectsFromAccountName("Municipal", "Storage")

Return Example:

{%"Reservoir1", %"Reservoir2"}

140. ObjectsFromAttributeValue

ObjectsFromAttributeValue("State", "Colorado")

Return Example:

{%"Arkansas", %"RioGrande", %"SanJuan", %"Dolores", %"Gunnison"}

Description Returns a list of the objects that contain an account with the given name
and account type.

Type LIST{OBJECT}

Arguments Type Meaning

1 STRING The name of the account.

2
STRING

The name of the account type, e.g, "Storage". The
string "ALL" for account type designates all account
types.

Comments

Description
Given a string representing an attribute and a string representing a value, return
a list of all of the objects that have that value for the attribute

Type LIST {OBJECT, OJBECT, ...}

Arguments Type Meaning

1 STRING The name of the Attribute

2 STRING The Value of the that Attribute.

Evaluation
When evaluated, the function looks throughout the model and finds all objects
that have the Attribute Value pair.The set of matching objects is returned in a
list.

Comments If the attribute or value is not found in the model, an error will be issued.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

140

RPL Predefined Functions
ObjectsFromWaterType

140
141. ObjectsFromWaterType

Syntax Example:

ObjectsFromWaterType("ALL", "Storage")

Return Example:

{%"Reservoir1", %"Reservoir2"}

142. OffsetDate

This function adds some number of timesteps to a given date/time and returns the result.

Description Returns a list of the objects that have an account with given water type
and account type.

Type LIST{OBJECTS}

Arguments Type Meaning

1 STRING
The water type. The string "ALL" for water type
designates all water types, and the string "NONE"
designates the default water type.

2
STRING

The name of the account type, e.g, "Storage". The
string "ALL" for account type designates all account
types.

Comments

Description Returns the date/time which is some number of timesteps added to or
subtracted from an input date/time.

Type DATETIME

Arguments Type Meaning

1 DATETIME a date/time.

2 NUMERIC
the number of timesteps to add (a negative number
will subtract). Should have units of "NONE".

3 STRING

a timestep specification.

This specification includes an integer which can be positive or
negative. Examples include "1 Months", "2 hours". Case is not
important in this string.

Evaluation Adds the given timestep, to the given date, to the given number of times,
then returns the result.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

141

RPL Predefined Functions
OperatingHeadToMaxRelease

141
Syntax Example:

OffsetDate(@"t", 1, "1 Months")
OffsetDate(@"January 1, 2000", getIncr(), "1 Hours")

Return Example:

@"July 31, 2007"

143. OperatingHeadToMaxRelease

This function performs a lookup in a Power Reservoir object’s Max Turbine Q table based on a given
operating head, and then evaluates to the corresponding maximum turbine release.

Comments

If the second argument has units other than "NONE", or if the third
argument is not recognized as a timestep, then the run is aborted with an
error.

Note: Although one can put any integral amount within the
timestep specification, if one makes this integer 1, then the
second argument allows (1) one to vary the increment at the
time of rule execution.

Additional information on datetime math can be found HERE
(RPLTypesPalette.pdf, Section 1.3.4)

Description Find the maximum turbine release at a given reservoir operating head.

Type NUMERIC

Arguments Type Meaning

1 OBJECT power reservoir object

2 NUMERIC operating head

3 DATETIME datetime context for unit conversions

Evaluation

The operating head argument is looked up in the Operating Head column, of the
Max Turbine Q table, of the power reservoir object argument, to determine the
Turbine Capacity. If the exact operating head is not in the table, the lookup
performs a linear interpolation between the two nearest bounding operating
heads and their corresponding turbine capacities.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

142

RPL Predefined Functions
OperatingHeadToMaxRelease

142
Syntax Example:

OperatingHeadToMaxRelease(%"Hoover Dam", 508.63 "ft",
@"t")

Return Example:

152.23 "cms"

Mathematical
Expression

Comments

If the object is not a power reservoir, the function aborts the run with an error. If
the Power Reservoir does not have a Max Turbine Q table, Plant Power
Coefficient must be selected as the Power selected method, or this function
exits the rule with an early termination.

turbine capacity turbine capacity lesser() +=

turbine capacity greater() turbine capacity lesser()–

operating head greater() operating head lesser()–
-- ×

operating head operating head lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

143

RPL Predefined Functions
OptDualPrice

143
144. OptDualPrice

Syntax Example:

OptDualPrice(%"Norris", “Mass Balance”, @”18:00 Jan 23, 2009”)

Return Example:

152.23 "$/m3"

Description Returns a physical constraint’s dual price as calculated during the most
recent Optimization solution.

Type NUMERIC

Arguments Type Meaning

1 OBJECT Desired object

2 STRING Physical constraint name

3 DATETIME Date at which to return the value

Evaluation

This function returns the dual price calculated during the last
optimization run for a physical constraint, where the constraint is
specified by three inputs: a simulation object, the name of a physical
constraint, and a date. For more information see the Optimization section
HERE (Optimization.pdf, Section 6.8).

Comments

If there is no physical constraint corresponding to the inputs, the run is
aborted. If the physical constraint exists, but has no dual price, then an
invalid value is returned.

The interpretation of the dual price is the change in the objective function
value per one unit increase in teh constraint right hand side. The units
are objective function units / constraint units

Currently the only physical constraint supported is “Mass Balance”.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

144

RPL Predefined Functions
OptReducedCost

144
145. OptReducedCost

Syntax Example:

OptReducedCost("Norris.Spill", @”18:00 Jan 23, 2009”)

Return Example:

152.23 "$/cms"

Description Returns a slot variable’s reduced cost as calculated during the most
recent Optimization solution.

Type NUMERIC

Arguments Type Meaning

1 SLOT Desired Slot

2 DATETIME Date at which to return the value

Evaluation

This function returns the reduced cost for the given slot at the given
timestep as part of the most recent optimization problem solution of the
last run using the Optimization controller. For more information see the
Optimization section HERE (Optimization.pdf, Section 6.8).

Comments

If there is no optimum reduced cost for the slot at that timestep, an invalid
value is returned.

This function supports the return of reduced costs which are associated
with decision variables, that is to variables which are contained in the
problem and are not replaced with linear combinations or substitutions of
other variables. If called for slots whose variables are not decision
variables, an error message will be posted, and the run will be aborted.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

145

RPL Predefined Functions
OptReducedCostByCol

145
146. OptReducedCostByCol

Syntax Example:

OptReducedCostByCol("Thermal.Hydro Block Use", 7, @”18:00 Jan 23, 2009”)

Return Example:

152.23 "$/MWH"

Description
Returns a slot variable’s reduced cost as calculated during the most
recent Optimization solution for a variable associated with a particular
column of an agg series slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT Specified Agg Series Slot

2 NUMERIC Column index (0-based)

3 DATETIME Date at which to return the value

Evaluation

This function returns the reduced cost for the given slot and column at
the given timestep as part of the most recent optimization problem
solution of the last run using the Optimization controller. For more
information see the Optimization section HERE (Optimization.pdf, Section
6.8).

Comments

If there is no reduced cost for the slot and column at that timestep, an
invalid value is returned.

This function supports the return of reduced values which are associated
with decision variables, that is, to variables which are contained in the
problem and are not replaced with linear combinations or substitutions of
other variables. If called for slots whose variables are not decision
variables, an error message will be posted, and the run will be aborted.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

146

RPL Predefined Functions
OptValue

146
147. OptValue

Syntax Example:

OptValue("Norris.Outflow", @”18:00 Jan 23, 2009”)

Return Example:

152.23 "cms"

Description Returns a slot variable’s optimal value as calculated during the most
recent Optimization solution.

Type NUMERIC

Arguments Type Meaning

1 SLOT Desired Slot

2 DATETIME Date at which to return the value

Evaluation

This function returns the optimal value for the given slot at the given
timestep as part of the most recent optimization problem solution of the
last run using the Optimization controller. For more information see the
Optimization section HERE (Optimization.pdf, Section 6.8).

Comments

If there is no optimum value for the slot at that timestep, but there is a slot
cache value, then the cached value is returned. If neither value is valid,
an invalid value is returned. In the future the return of the cached value is
likely to be eliminated.

This function supports the return of slot values which correspond to
decision variables, that is to variables which are contained in the problem
and are not replaced with linear combinations of other variables. If called
for slots whose variables are not decision variables, an error message
will be posted and the run will be aborted. Note that the
OptValuePiecewise function allows access to the piecewise
approximation of non-decision variables for which the piecewise
approximation technique is applicable.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

147

RPL Predefined Functions
OptValueByCol

147
148. OptValueByCol

Syntax Example:

OptValueByCol("Thermal.Hydro Block Use", 7, @”18:00 Jan 23, 2009”)

Return Example:

152.23 "MWH"

Description
Returns a slot variable’s optimal value as calculated during the most
recent Optimization solution for a variable associated with a particular
column of an agg series slot.

Type NUMERIC

Arguments Type Meaning

1 SLOT Specified Agg Series Slot

2 NUMERIC Column index (0-based)

3 DATETIME Date at which to return the value

Evaluation

This function returns the optimal value for the given slot and column at
the given timestep as part of the most recent optimization problem
solution of the last run using the Optimization controller. For more
information see the Optimization section HERE (Optimization.pdf, Section
6.8).

Comments

If there is no optimum value for the slot and column at that timestep, but
there is a slot cache value, then the cached value is returned. If neither
value is valid, an invalid value is returned. In the future the return of the
cached value is likely to be eliminated.

This function supports the return of slot values which correspond to
decision variables, that is, to variables which are contained in the
problem and are not replaced with linear combinations of other variables.
If called for slots whose variables are not decision variables, an error
message will be posted and the run will be aborted.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

148

RPL Predefined Functions
OptValuePiecewise

148
149. OptValuePiecewise

Syntax Example:

OptValuePiecewise(%"Kumquat Reservoir.Power", @”18:00 Jan 23, 2009”)

Return Example:

6.1 "MW"

150. Percentile

 Returns the pth percentile from a list of values.

Description Returns a slot variable’s piecewise approximation value as calculated
during the most recent Optimization solution.

Type NUMERIC

Arguments Type Meaning

1 SLOT Specified Slot

2 DATETIME Date at which to return the value

Evaluation

Given a Series Slot and a date, this function returns the piecewise
approximation of the slot at the given date, as computed during the most
recent problem solution of the last optimization run.

For more information see the Optimization section HERE
(Optimization.pdf, Section 6.8).

Comments

The function will fail if the variables associated with the slot are not
approximated (i.e., are decision variables or are replaced by a linear
combination of other variables).

If there is no approximation value available, perhaps because the
quantity was not referenced in the optimization policy or there has been
not been a successful optimization run, the function returns an invalid
value.

Description
This function returns the pth percentile from a list of values. In other
words, it returns the value with a given percentile from a distribution.

Type NUMERIC

Arguments Type Meaning

1 LIST
A list of NUMERIC values representing the
distribution.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

149

RPL Predefined Functions
Percentile

149
Syntax Example:

Percentile({1”cfs”, 7”cfs”, 3”cfs”, 4”cfs”}, 0.3)

Return Example:

2.0”cfs”

2 NUMERIC
The probability p for which you wish the
corresponding value. Note that p should be between
0 and 1 inclusive.

Evaluation

The list in argument one describes the distribution by providing
independently sampled values from that distribution. The function returns
an estimate of the value which has the given probability p of being
greater than a value taken from the distribution. Consequently, for an
input probability p at most (100*p)% of the values in the data set will be
less than the return value (and at most 100*(1-p)% will be greater than
this value).

Several methods exist for computing the percentile; the following is the
technical definition used by the Percentile function: for the pth percentile,
Percentile(list, p):

Compute p x (N + 1) where N is the number of items in the data set.
Then set k and d, where k + d = p x (N + 1), k is an integer, and d is a
fraction greater than or equal to 0 and less than 1. Essentially k is the
integer part and d is the decimal part of p x (N + 1).

Then, sort the numeric values in the list in increasing order. The function
Y[i] denotes the i'th sorted value of the numeric list, where i is between 1
and N, inclusive.

Then:

If k = 0, Percentile(list, p) = Y[1]

If 0 < k < N, Percentile(list, p) = Y[k] + (d)(Y[k+1] - Y[k])

If k = N, Percentile(list, p) = Y[N]

For more details, refer to “NIST/SEMATECH e-Handbook of Statistical
Methods” (http://www.itl.nist.gov/div898/handbook/prc/section2/
prc252.htm).

Comments

Note that this function is sometimes called the “quantile” function.

Excel’s, PERCENTILE function sets 1+p(N-1) equal to k + d, then proceeds
as above. The two methods give similar results.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

150

RPL Predefined Functions
PercentRank

150
151. PercentRank

Syntax Example:

PercentRank({4”cfs”, 4”cfs”, 3”cfs”, 1”cfs”}, 2.3”cfs”)

Return Example:

0.21666667

152. PreviousDate

Returns the previous date which matches a partially specified date.

Description Find the rank of a given value within a list of values as a percentage of
the number of values in the list.

Type NUMERIC

Arguments Type Meaning

1 LIST a list of numeric values

2 NUMERIC the value for which to determine the rank

Evaluation

This function provides a measure of the relative standing of a value
within a data set.

If the value whose percent rank is being determined, x, is one of the input
values, then the return value is computed by:

Otherwise, interpolation is used to combine the percent ranks for the
closest data points on either size of x.

If the input values are viewed as a sample from some distribution, then
PERCENTRANK can be viewed as a smooth estimate of the empirical
cumulative distribution function.

Comments Note, this function produces the same results as Excel’s PERCENTRANK
function.

Description Resolves a partially specified date/time into the previous (with respect to
a reference date) date/time which matches the specified fields.

Type DATETIME

of values less than x
of values # of values equal to x–

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

151

RPL Predefined Functions
PreviousDate

151
Syntax Example:

PreviousDate(@"t", @"March")
returns: 24:00 March 31, 1994
(assuming the t is any date between March, 1994 and March, 1995)
PreviousDate(@"24:00 May 10, 1995", @"March 20")
returns: 24:00 March 20, 1995
PreviousDate(@"24:00 February 28, 1994", @"MAX DayOfMonth")
returns: February 28, 1994
PreviousDate(@"24:00 February 28, 1994", @"Tuesday")
returns: 24:00 February 22, 1994
PreviousDate(@"24:00 February 28, 1994", @"6:00 MAX DayOfYear")
returns: 6:00 December 31, 1993
PreviousDate(@"24:00 February 28, 1994", @"6:00")
returns: 6:00 February 28, 1994

Arguments Type Meaning

1 DATETIME a reference date/time.

2 DATETIME a partially specified date/time.

Evaluation

The unspecified fields with a coarser resolution are resolved into the past
with respect to the reference date. If there are finer resolution fields, they
are filled in with default values (e.g., time with 24:00, day of the month
with the last day of the month). Note that if the partial date can be
resolved into the current date, it is. See the "Syntax Examples" section
below for some examples.

Comments
If the reference date/time is not fully specified or if the partial date/time
is, then the run is aborted with an error.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

152

RPL Predefined Functions
RanDev

152
153. RanDev

Syntax Example:

RanDev(1)

Return Example:

0.34105

Description Returns the next number in a pseudo-random sequence.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC
a number which is ignored except that the units are taken
as the units to be returned.

Evaluation Returns the next number in the pseudo-random series, given a seed.

Comments

This function should not be called within a user-defined function which has no
arguments, if that user-defined function might be called multiple times within a
single block (rule). This is because functions with no arguments are actually
evaluated only once per rule and return this same result on each function call
during the execution of that block.

This is not a very good random number generator, but is implemented in this
way for historical reasons. If ResetRanDev() has not been called before this
function, then the results are unpredictable.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

153

RPL Predefined Functions
Random, RandomNormal

153
154. Random, RandomNormal

Syntax Example:

RandomNormal(1.0, 1.0, 1.0)
RandomNormal(1.0, 3.0, 0.0)

Return Example:

Description Returns a given number in a pseudo-random sequence.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC

a numeric value which is rounded down to an integer and
used to identify a unique sequence of numbers -- calls
with the same integral

seed refer to the same random sequence of numbers.

2 NUMERIC
a numeric value which is rounded down to an integer and
denotes the one-based index into the random sequence
of the value to be returned.

3 NUMERIC
a number which is ignored except that the units are taken
as the units to be returned.

Evaluation

Random returns a number from a random sequence of numbers uniformly
distributed in the range [0, 1.0].

RandomNormal returns a number from a random sequence of numbers
whose distribution is normal with a mean of 0 and a standard deviation of 1.

The unique sequence of numbers associated with each integral seed is the
same on all platforms supported by RiverWare, allowing for repeatable results.

The sequences are generated using the linear congruential method described

in Park and Miller (1988) Communication of the ACM, vol 31, pages 1192-
1201.

Note: random number generators such as this are often referred to as "pseudo-
random" because they are not the result of an intrinsically

random process, are in fact predictably determined by the seed.

Comments

The time to evaluate a call to either of these functions is proportional to the
magnitude of the index argument (because the entire sequence must be
generated at least once per RiverWare execution). Thus, if performance is an
important issue, one should choose to get numbers from the earlier portion of a
sequence.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

154

RPL Predefined Functions
ReleaseTypes

154
Refer to the sequence: 0.09151046 0.33494915 -1.421276 -1.24931121 ...

Thus, the first call returns the first number in the sequence (0.09151046) and the second call returns
the third number in the sequence (0.33494915).

155. ReleaseTypes

This function evaluates to the list of user-defined ReleaseTypes

Syntax Example:

ReleaseTypes()

Return Example:

{"MinimumFlows", "ProjectWater", "Flood"}

156. ReleaseTypesFromObject

This function evaluates to the list of ReleaseTypes which represent outflows from an Object

Description
This function returns a list of the names of all ReleaseTypes defined in the
Water Accounting System Configuration.

Type LIST {STRING}

Arguments Type Meaning

Evaluation

Comments ReleaseTypes are properties of Supplies. The returned list does not include
the default ("NONE") ReleaseType.

Description
This function returns a list of unique names of ReleaseTypes of Supplies
which represent outflows from a specified Object.

Type LIST {STRING}

Arguments Type Meaning

1 OBJECT The Object.

Evaluation

The set of Accounts on the Object are examined. The outflow Supplies on
those Accounts which link a different downstream Object are considered.
The names of the ReleaseTypes of those Supplies are added to the
returned list -- but any given ReleaseType name will appear on the list only
once.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

155

RPL Predefined Functions
ReleaseTypesFromObject

155
Syntax Example:

ReleaseTypesFromObject(%"Reservior1")

Return Example:

{"MinimumFlows", "Flood"}

Comments
ReleaseTypes are properties of Supplies. The returned list can include the
default ("NONE") ReleaseType. Supplies which represent "internal flows"
between two Accounts on the Object are not considered.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

156

RPL Predefined Functions
ResetRanDev

156
157. ResetRanDev

Syntax Example:

ResetRanDev(TRUE, @"24:00:00 October Max DayOfMonth, 1983")

Return Example:

TRUE or FALSE

Description
Initialize internal data structures to permit RanDev() to return a pseudo-random
sequence of numbers. This involves reading a file, each line of which has a
date associated with it. Basically, this is a "seeding" function.

Type BOOLEAN

Arguments Type Meaning

1 BOOLEAN
True if some lines in the initialization file should be
skipped.

2 DATETIME The date of the line to be skipped.

Evaluation Returns true if initialization was successful.

Comments

The recommendation is that this function be called within a block that contains
only the following statement:

obj.slot[] = IF (NOT ResetRanDev(...))

 STOP_RUN "ResetRanDev failed"

 ENDIF

This will never assign any values but will always evaluate the function call. An
alternative is to embed the call within a Print statement, but if diagnostics are
turned off then this statement will not get executed.

This, and the RanDev() function are scheduled to be removed in the future and
replaced with a more convenient and effective means of generating a sequence
of pseudo-random numbers.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

157

RPL Predefined Functions
Reverse

157
158. Reverse

Syntax Example:

Reverse({ 1.0, {res1, 10}, "hello", 0.0, "bob"})

Return Example:

{ "bob", 0.0, "hello", {res1, 10}, 1.0}

159. RowLabel

Syntax Example:

RowLabel(DataObjA.CoeffTable, 2)

Return Example:

"Coefficient 1"

Description Reverses the order of items in a list.

Type LIST

Arguments Type Meaning

1 LIST a list of values

Evaluation Returns a list with the same values as the input list, in reverse order.

Comments

Description Returns the label associated with a given row of a table slot.

Type STRING

Arguments Type Meaning

1 SLOT A table slot

2 NUMERIC The row index (0-based).

Evaluation Returns the label of the row of the table slot which has the given index.

Comments
It is an error to provide an illegal index (e.g., an index of 4 with a table which has
only 4 rows). If the row index is legal but there is no label for that row, then the
empty string is returned: "".
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

158

RPL Predefined Functions
RowLabels

158
160. RowLabels

Syntax Example:

RowLabels(DataObjA.CoeffTable)

Return Example:

{“Coefficient 1”, “Coefficient 2”, “Coefficient 3”}

Description Returns a list containing the labels of the rows of a given table slot, in order.

Type LIST of STRING values

Arguments Type Meaning

1 SLOT A table slot or agg. series slot

Evaluation Returns the label of the column of the table slot which has the given index.

Comments It is an error if the input slot has a type other than table slot. For each column, if no
label exists the empty string is returned.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

159

RPL Predefined Functions
RunStartDate and RunEndDate

159
161. RunStartDate and RunEndDate

Syntax Example:

RunStartDate()

Return Example:

@"January 1, 2003"

162. RunTime

Syntax Example:

RunTime()

Return Example:

22.000 "s"

Description RunStartDate and RunEndDate return the start or end date of the currently
active controller, respectively.

Type DATETIME

Arguments Type Meaning

Comments

When evaluated from a Rule, Goal, or Method set, these functions are
equivalent to @"Start Timestep" or @"Finish Timestep". But, for Expression
Series Slots, the symbolic datetime specifications @"Start Timestep" and
@"Finish Timestep" refer to the expression slot’s evaluation range, not the
controller’s start or end dates. Thus, RunStartDate() may not be equivalent to
@"Start Timestep" and RunEndDate() may not be equivalent to @"Finish
Timestep".

But, regardless of the set from which they are called, RunStartDate and
RunEndDate functions provide a fixed references to the controller’s start and
end dates, respectively.

Description
Returns the number of seconds which have elapsed since the current run
began, or if called from outside a run, the total number of seconds within the
last run.

Type NUMERIC
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

160

RPL Predefined Functions
SlotCacheValue

160
163. SlotCacheValue

Syntax Example:

SlotCacheValue(%"Berkley.Outflow", @”18:00 Jan 23, 2009”)

Return Example:

152.23 "cms"

Description Returns a series slot’s value from the slot cache.

Type NUMERIC

Arguments Type Meaning

1 SLOT Series slot whose cache value is desired

2 DATETIME Date for which the value is desired

Evaluation Returns the slot cache value for the given series slot at the given date. If
there is no such value, an invalid value is returned.

Comments

The slot cache is a repository of series slot values which can be created
from workspace series slots allowing access within one run to values
computed by a previous run.The cache is described HERE
(Workspace.pdf, Section 5.9).

Note, the slot cache is under development. Please contact riverware-
support@colorado.edu for more information and the current status
of this feature.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

161

RPL Predefined Functions
SlotCacheValueByCol

161
164. SlotCacheValueByCol

Syntax Example:

SlotCacheValueByCol(%"Klamath Data.Precip", 2, @”18:00 Jan 23, 2009”)

Return Example:

1.23 "m"

Description Returns an aggregate series slot’s value from the slot cache.

Type NUMERIC

Arguments Type Meaning

1 SLOT
Aggregate series slot for which a slot cache value is
desired.

2 NUMERIC Index of the column for which a value is desired.

3 DATETIME Date for which a value is desired.

Evaluation Returns the slot cache value for the given series slot at the given date. If
there is no such value, an invalid value is returned.

Comments

The slot cache is a repository of series slot values which can be created
from workspace series slots, allowing access within one run to values
computed by a previous run. The cache is described HERE
(Workspace.pdf, Section 5.9).

Note, the slot cache is under development. Please contact riverware-
support@colorado.edu for more information and the current status
of this feature.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

162

RPL Predefined Functions
SlotWeightedAverageOverTime

162
165. SlotWeightedAverageOverTime

Syntax Example:

SlotWeightedAverageOverTime(Mead.Outflow, Mead.Salt Concentration, @”January”,
@”December”, @”t”)

Description Computes a Series Slot's weighted average over a given time period, using
another Series Slot’s values in that same time range as the weights.

Type NUMERIC

Arguments

1 SLOT Slot 1: the weighting slot

2 SLOT Slot 2: the slot being averaged

3 DATETIME
Begin timestep for period of average - partially
specified

4 DATETIME End timestep for period of average - partially specified

DATETIME Reference timestep

Evaluation

The partially specified begin and end timesteps are converted to fully specified
timesteps using the reference timestep to complete the missing information.

The weighted average is then computed as the quotient of two summations
over the averaging time period (begin timestep to end timestep):

Comments

For a calendar year weighting of monthly timesteps, the time arguments would
be @“January”, @“December”, and @“t”

For a water year weighting of monthly timesteps, the time arguments would be
@“October 31, Previous Year”, @“September 30”, @“t”.

For a monthly weighting, the time arguments would be @“DayOfMonth 1”,
@“Max DayOfMonth”, @“t”.

Slot 1 i[] Slot 2 i[]×

Begin

End



Slot 1 i[]

Begin

End


--
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

163

RPL Predefined Functions
SolveInflow

163
166. SolveInflow

This performs a mass balance and evaluates to the inflow of a reservoir given its outflow, previous
storage, and end of timestep storage at the specified timestep.

Description The inflow to a reservoir given outflow and storage.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average outflow over the timestep

3 NUMERIC the end of timestep storage

4 NUMERIC the previous (beginning) storage

5 DATETIME the timestep at which to calculate

Evaluation

This function calls the massBalanceSolveInflow() function on the given reservoir
object at the given timestep, and provides it with the average outflow over the
timestep, beginning storage, and ending storage. The function computes the end
of timestep pool elevation, and then determines the average inflow over the
timestep, taking into account the following sources and sinks.

• The Evaporation and Precipitation category selected Method.
• The Bank Storage category selected Method.
• The Seepage category selected Method.
• Side inflows like Hydrologic Inflow, Return Flow, and Diversion are NOT

included.

The total inflow is then calculated as the difference between the ending and
beginning storage over the timestep, plus the outflow, evaporation, bank storage,
and seepage, minus precipitation.

Mathematical
Expression

Comments The given outflow is a total outflow and should include any spills. The calculated
inflow is a total inflow.

Total Inflow
storageprevious storageending–

Δttimestep
-- outflow

evaporationflow bank storageflow seepage

precipitationflow–

+

+ + +

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

164

RPL Predefined Functions
SolveOutflow

164
Syntax Example:

SolveInflow(%"Hoover Dam", 13651 "cfs", 19853486 "acrefeet",
 19787262 "acrefeet", @"June, 1984"}
returns 12.5 "cms"

167. SolveOutflow

This performs a mass balance and evaluates to the outflow from a reservoir given its inflow, previous
storage, and end of timestep storage at the specified timestep.

Description The outflow from a reservoir.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average inflow over the timestep

3 NUMERIC the end of timestep storage

4 NUMERIC the previous (beginning) storage

5 DATETIME the timestep at which to calculate

Evaluation

This function calls the massBalanceSolveOutflow() function on the given
reservoir object at the given timestep and provides it with the average inflow
over the timestep, beginning storage, and ending storage. The function
computes the end of timestep pool elevation, and then determines the
average outflow over the timestep, taking into account the following sources
and sinks, and thus they should not be included in the inflow value for
Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2 (Slope Power Reservoir only),
Hydrologic Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM
Pumped Storage, and Flow TO Pumped Storage. These slots are
automatically added as dependencies to the calling rule.

The outflow is then calculated as the difference between the ending and
beginning storage over the timestep, plus the inflow, side inflows, and
precipitation, minus evaporation, bank storage, and seepage.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

165

RPL Predefined Functions
SolveOutflowGivenEnergyInflow

165
Syntax Example:

SolveOutflow(%"Hoover Dam", 11651 "cfs", 19853486 "acrefeet",
 19787262 "acrefeet", @"June, 1984"}

Return Example:

21.32 "cms"

168. SolveOutflowGivenEnergyInflow

This function evaluates to Outflow from a LevelPowerReservoir with the given Energy and Inflow at
the specific timestep.

Mathematical
Expression

Comments

The given inflow in argument 2 represents the main inflow only and should
not include any side inflows. This is the same value which would be in the
Inflow slot.

The calculated outflow is a total outflow. It includes both Release/Turbine
Release and Spill.

The given timestep’s Inflow 2 (Slope Power Reservoir only), Hydrologic
Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped
Storage, and Flow TO Pumped Storage. are automatic dependencies of
this function. Since the function evaluation depends on these slots, any
change to their values at the indicated timestep, may impact the function
result.

Description The outflow from a LevelPowerReservoir.

Type NUMERIC

Arguments

1 OBJECT
the reservoir object for which to calculate

(must be a LevelPowerReservoir)

2 NUMERIC the energy value

3 NUMERIC the inflow value

4 DATETIME the timestep at which to calculate

Outflow
storageprevious storageending–

Δttimestep
-- inflow side inflows

evaporationflow bank storageflow seepage––– precipitationflow

+ +

+

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

166

RPL Predefined Functions
SolveShortage

166
Syntax Example:

SolveOutflowGivenEnergyInflow(%"HooverDam", HooverDam.Energy[],
 HooverDam.Inflow[], @"t")
SolveOutflowGivenEnergyInflow(%"HooverDam", 20.0 "MWH", 1000.0 "cfs",
 @"t")

Return Example:

16.342 "cms"

169. SolveShortage

Given some total available water, this method solves for the Diversion Shortage and Depletion
Shortage on a Water User, or the Total Diversion Shortage and Total Depletion Shortage on an
AggDiversionSite. It evaluates to a list which contains the two values.

Evaluation This function behaves identically to the solution of the LevelPowerReservoir
in simulation.

Comments

This function assumes that the LevelPowerReservoir has solved for all the
timesteps prior to the date specified in argument 4. This is necessary
because the solution requires previous storage, inflow, and energy. This
information is retrieved from slots on the object at timesteps prior to the date
specified in argument 4. If any of this information is missing, an error is
posted and the rule fails. If this function is called on the first timestep, the
initial input data are used. These data are already required for the
LevelPowerReservoir to dispatch in simulation mode.

This function takes into account the following sources and sinks
automatically, and thus they should not be included in the inflow value for
Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Hydrologic Inflow Net, Diversion, Return Flow,
Canal Flow, Flow FROM Pumped Storage, and Flow TO Pumped Storage.

These slots are automatically added as dependencies to the calling rule.

Description List containing the (Total) Diversion Shortage and (Total) Depletion Shortage

Type LIST {NUMERIC, NUMERIC}

Arguments Type Meaning
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

167

RPL Predefined Functions
SolveSlopeStorageGivenInflowHW

167
Syntax Example:

SolveShortage(%"San Juan Diversion", 100 "cfs", @"t"}

Return Example:

{1.25 "cms", 1.02 "cms"}

170. SolveSlopeStorageGivenInflowHW

This function is used to solve a Slope Power Reservoir object when inflow and pool elevation are
known. A LIST is returned which contains the resulting outflow as the first argument and the resulting
storage as the second argument.

1 OBJECT
the object on which to perform the calculations (either an
AggDiversionSite or a Water User)

2 NUMERIC the total water available for diversion

3 DATETIME the timestep at which to calculate

Evaluation

This function behaves identically to the solution of the object in simulation. It
mimics the dispatch method of the given object. However, instead of setting
slots, the method just returns the values for (Total) Diversion Shortage and
(Total) Depletion Shortage.

Comments

This function exits its calling rule with an early termination if any of the required
data used to solve the diversions are unknown. Note: Depletion Requested is
not required, if not specified it will be set equal to Diversion Requested.

This function aborts the run with an error if an object other than a Water User or
an AggDiversionSite is given as the first argument.

Description List containing the resulting outflow and the resulting storage value

Type LIST {NUMERIC, NUMERIC}

Arguments Type Meaning

1 OBJECT
the object on which to perform the calculations (must be a
Slope Power Reservoir)

2 NUMERIC the inflow value

3 NUMERIC the pool elevation value

4 DATETIME the timestep at which to calculate

Evaluation This function behaves identically to the solution of the object in simulation.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

168

RPL Predefined Functions
SolveSlopeStorageGivenInflowOutflow

168
Syntax Example:

SolveSlopeStorageGivenInflowHW(%"FtLoudoun", FtLoudoun.Inflow[], FtLoudoun.Pool
 Elevation[], @"t")
SolveSlopeStorageGivenInflowHW(%"FtLoudoun", 100.0 "cfs", 240.45 "ft",
 @"t")

Return Example:

{16.342 "cms", 123348183.75 "m3"}

171. SolveSlopeStorageGivenInflowOutflow

This function is used to solve a Slope Power Reservoir object when inflow and outflow are known. A
LIST is returned which contains the resulting pool elevation as the first argument and the resulting
storage as the second argument.

Comments

This function assumes that the Slope Power Reservoir has solved (through
simulation) for all timesteps prior to the date specified in argument 4. This is
necessary because the solution requires previous inflow, outflow, storage and
pool elevation data. This information is retrieved from slots on the object at
timesteps prior to the date specified in argument 4. If any of this information is
missing, an error is posted and the rule fails. If this function is called on the first
timestep, the initial input data is used. This data is already required for the
Slope Power Reservoir to dispatch in simulation mode.

This function takes into account the following sources and sinks automatically,
and thus they should not be included in the inflow value for Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2, Hydrologic Inflow Net, Diversion, Return
Flow, Canal Flow, Flow FROM Pumped Storage, and Flow TO Pumped
Storage. These slots are automatically added as dependencies to the
calling rule.

Description List containing the resulting pool elevation and the resulting storage value

Type LIST {NUMERIC, NUMERIC}

Arguments Type Meaning

1 OBJECT
the object on which to perform the calculations (must be a
Slope Power Reservoir)

2 NUMERIC the inflow value
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

169

RPL Predefined Functions
SolveStorage

169
Syntax Example:

SolveSlopeStorageGivenInflowOutflow(%"FtLoudoun", FtLoudoun.Inflow[],
 FtLoudoun.Outflow[], @"t")
SolveSlopeStorageGivenInflowOutflow(%"FtLoudoun", 100.0 "cfs", 110.45 "cfs",
 @"t")

Return Example:

{1253.2 "m", 123348183.75 "m3"}

172. SolveStorage

This performs a mass balance and evaluates to the end of timestep storage of a reservoir, given its
previous storage and average inflow and outflow at the specified timestep.

3 NUMERIC the outflow value

4 DATETIME the timestep at which to calculate

Evaluation This function behaves identically to the solution of the object in simulation.

Comments

This function assumes that the Slope Power Reservoir has solved (through
simulation) for all timesteps prior to the date specified in argument 4. This is
necessary because the solution requires previous inflow, outflow, storage and
pool elevation data. This information is retrieved from slots on the object at
timesteps prior to the date specified in argument 4. If any of this information is
missing, an error is posted and the rule fails. If this function is called on the first
timestep, the initial input data is used. This data is already required for the
Slope Power Reservoir to dispatch in simulation mode.

This function takes into account the following sources and sinks automatically,
and thus they should not be included in the inflow value for Argument 2.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2, Hydrologic Inflow Net, Diversion, Return
Flow, Canal Flow, Flow FROM Pumped Storage, and Flow TO Pumped
Storage. These slots are automatically added as dependencies to the
calling rule.

Description The storage of a reservoir.

Type NUMERIC

Arguments Type Meaning
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

170

RPL Predefined Functions
SolveStorage

170
1 OBJECT the reservoir object for which to calculate

2 NUMERIC the average inflow over the timestep

3 NUMERIC the average outflow over the timestep

4 NUMERIC the previous (beginning) storage

5 DATETIME the timestep at which to calculate

Evaluation

This function calls the massBalanceSolveStorage() function on the given
reservoir object at the given timestep and provides it with the average inflow
and outflow over the timestep, and beginning storage. The function must iterate
to convergence due to the storage and pool elevation dependence of the
following sources and sinks, which are included automatically:

• The Evaporation and Precipitation Category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Inflow 2 (Slope Power Reservoir only), Hydrologic
Inflow Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped Storage,
and Flow TO Pumped Storage. These slots are automatically added as
dependencies to the calling rule.

At each iteration, the ending storage is calculated as the previous storage plus
the inflow, side inflows, and precipitation over the timestep, minus the
evaporation, bank storage, and seepage over the timestep

Mathematical
Expression

Comments

The given inflow in Argument 2 represents the main inflow only and should not
include any side inflows. This is the same value which would be in the Inflow
slot.

The given outflow represents the total outflow. It should include both Release/
Turbine Release and Spill.

The given timestep’s Inflow 2 (Slope Power Reservoir only), Hydrologic Inflow
Net, Diversion, Return Flow, Canal Flow, Flow FROM Pumped Storage, and Flow
TO Pumped Storage are automatic dependencies of this function. Since the
function evaluation depends on these slots, any change to their values at the
indicated timestep, may impact the function result.

Storage storageprevious inflow side inflows+() ttimestepΔ()
outflow() ttimestepΔ()–

evaporationvolume bank storagevolume seepage() ttimestepΔ()–––
precipitationvolume

+

+

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

171

RPL Predefined Functions
SolveSubbasinDiversions

171
Syntax Example:

SolveStorage(%"Hoover Dam", 11651 "cfs", 13672 "cfs",
 19787262 "acrefeet", @"June, 1984")

Return Example:

 123348183.75 "m3"

173. SolveSubbasinDiversions

This function evaluates to a list of two values. The first value, is the minimum inflow to a subbasin
required to satisfy all of its diversions. The second value, is the outflow from the subbasin when this
minimum flow is available.

Description Minimum Inflow required to meet all diversion requests and resulting Outflow.

Type LIST {NUMERIC, NUMERIC}

Arguments Type Meaning

1 LIST
the subbasin’s Reach and Confluence objects in
downstream order (can be included in a subbasin)

2 DATETIME the timestep at which to calculate
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

172

RPL Predefined Functions
SolveSubbasinDiversions

172
Evaluation

The subbasin diversion requirement is originally set to zero. Each of the
objects in the subbasin list is processed in the downstream order in which
they are provided. If the object is a Reach, the following calculations are
performed:

• If an Aggregate Diversion Site is linked to the Reach’s Diversion slot, the
NetNonShortDiversionRequirement function is executed on the diversion.
This determines the diversion requirement from the Reach.

• If an Aggregate Diversion Site is linked to the Reach’s Diversion slot, the
minimum flow just below the diversion point is determined from the Reach’s
Minimum Diversion Bypass slot. If this slot does not exist because of the
selected User Method in the Min Diversion Bypass category, the minimum
flow requirement is zero.

• If nothing is linked to the Diversion slot, but a value exists in the slot, this
value is assumed to be the diversion requirement for this reach. In this
case, there is no minimum flow requirement below the diversion point.

• The subbasin diversion requirement is recalculated as the greater of the
previous subbasin diversion requirement or the Reach diversion require-
ment plus the minimum flow requirement plus any cumulative upstream
diversions minus any cumulative upstream return flows minus any cumula-
tive upstream tributary inflows.

• Any Local Inflow to the Reach is added to the cumulative tributary inflows.
• If the Return Flow slot has a valid value, it is added to the cumulative return

flows. If the Return Flow slot does not have a valid value, but a Water User
or an Aggregate Diversion Site object is linked to it, the return flow is esti-
mated. Return flow is estimated by subtracting the object’s (Total) Depletion
Requested from its (Total) Diversion Requested. The estimated return flow
is then added to the cumulative return flows. If Depletion Requested is not
specified, it will be set equal to Diversion Requested.

If the object is a Confluence, the Inflow1 and Inflow2 slots are checked to
determine which is the main subbasin flow and which is the tributary inflow.
The objects linked to the inflow slots are checked against the last Reach
object to be processed. When a match is found, the other Inflow, if valid, is
added to the cumulative tributary inflows.

The loop continues until all objects in the list have been processed. The
largest subbasin diversion requirement to have been calculated at any
diversion point is the total subbasin diversion requirement.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

173

RPL Predefined Functions
SolveSubbasinDiversions

173
Syntax Example:

SolveSubbasinDiversions(ListSubbasin("AnimasBasin"), @"t")

Return Example:

{ 0.954 "cms", 0.00 "cms" }

Mathematical
Expression

Comments

This function exits its calling rule with an early termination if any of the
required data used to solve the diversions are unknown.

The required data is the same as that needed for the
NetNonShortDiversionRequirement predefined function for each Aggregate
Diversion Site along the subbasin.

This function aborts the run with an error if an object other than a Reach or
Confluence is in the subbasin list. One of the Confluence Inflows must be
linked to the previous Reach object upstream, or an Aggregate Reach which
contains the previous Reach object upstream as its last element. If this
condition is not met, the Confluence cannot determine which slot is the
tributary inflow and the function aborts the run with an error.

All subbasin diversion requirement calculations are performed at the given
timestep. Subbasin diversion requirement will not be correct if there are lags
in Reaches. This predefined function is recommended for use in long
timestep models or for subbasins where there is no lag between top and
bottom.

Max Reach in subbasin∀()

NetNonShortDiversionRequirement AggDivSite()

minimum flow Reach() Diversion
Upstream Reach



Return Flow Tributary Inflow
Upstream Reach Confluence,

–

Upstream Reach
–

++
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

174

RPL Predefined Functions
SolveTurbineRelGivenEnergyInflow

174
174. SolveTurbineRelGivenEnergyInflow

Description
This function computes the Turbine Release necessary to meet the
specified Energy. If that energy cannot be met, the maximum turbine release
is returned.

Type LIST {NUMERIC, BOOLEAN}

Arguments

1 OBJECT
the reservoir object for which to calculate

(must be a LevelPowerReservoir)

2 NUMERIC the energy value

3 NUMERIC the inflow value

4 DATETIME the timestep at which to calculate

Evaluation

This function behaves like the solution of the LevelPowerReservoir in
simulation. If the given energy can be met by the turbine release, TRUE is
returned in the list boolean. If the given energy cannot be met, the turbine
release is calculated to be the maximum release as computed by
GetMaxReleaseGivenInflow and FALSE is returned in the list boolean.The
maximum turbine release may be reduced by specified Plant Power Limits
and Plant Power Cap Fractions, as appropriate for the selected power
method.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

175

RPL Predefined Functions
SolveWaterRights and SolveWaterRightsWithLags

175
Syntax Example:

SolveTurbineRelGivenEnergyInflow(%"HooverDam", HooverDam.Energy[],
 HooverDam.Inflow[], @"t")
SolveTurbineRelGivenEnergyInflow(%"HooverDam", 20.0 "MWH", 1000.0 "cfs, @"t")

Return Example:

{16.342 "cms", TRUE}

175. SolveWaterRights and SolveWaterRightsWithLags

This water accounting function invokes the Water Rights Allocation method on a computational
subbasin HERE (Accounting.pdf). The subbasin identifies a set of accounts for which to solve; the Water

Comments

This function assumes that the LevelPowerReservoir has solved for all the
timesteps prior to the date specified in argument 4. This is necessary
because the solution requires previous Storage. This information is retrieved
from slots on the object at timesteps prior to the date specified in argument
4. If any of this information is missing, an error is posted and the rule fails. If
this function is called on the first timestep, the initial input data are used.
These data are already required for the LevelPowerReservoir to dispatch in
simulation mode.

This function takes into account the following sources and sinks
automatically, and thus they should not be included in the inflow value for
Argument 3.

• The Evaporation and Precipitation category selected Method.

• The Bank Storage category selected Method.

• The Seepage category selected Method.

• Side inflows including: Hydrologic Inflow Net, Diversion, Return Flow,
Canal Flow, Flow FROM Pumped Storage, and Flow TO Pumped Storage.
These slots are automatically added as dependencies to the calling
rule.

Also, if there are Unregulated Spills, the unregulated spill is limited to be no
greater than the max unregulated spill. This is described in the Unregulated
Spill documentation on the Level Power Reservoir.

Note, for the Plant Power Coefficient and Plant Efficiency Curve power
methods, if you have an input value on the Power Coefficient slot, the result
of solveTurbineRelGivenEnergyInflow is non-unique. A value will be found,
but there may be multiple solutions that meet the specified energy.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

176

RPL Predefined Functions
SolveWaterRights and SolveWaterRightsWithLags

176
Type identifies the supply chain that models the allocatable flow of water in the subbasin. The date
controls the behavior of instream flow rights during the solution.

Description Invokes computational subbasin’s Water Rights Allocation method.

Type
SolveWaterRights: LIST { LIST { SLOT, NUMERIC } }

SolveWaterRightsWithLags: LIST{ LIST{SLOT, DATETIME, NUMERIC} }

Arguments Type Meaning

1 STRING the name of the computational subbasin

2 STRING
the name of the Water Type that identifies the allocatable
flow supply chain

3 DATETIME

"controlling date" for instream flow rights. Rights at or
senior to (i.e., with priority date earlier or equal to) this
date can make calls; instream flow rights junior to this
date compute their Available Allocatable Flow.

Evaluation

Runs the selected Water Rights Allocation method on the subbasin. For each
water right account (has priority) in the subbasin, the function returns {slot,
value} pairs for the following slots:

• Appropriation Request on all rights,

• Available Allocatable Flow on Instream Flow Accounts whose priority date
is later than the controlling date (3rd argument),

• Supply slot values representing appropriations to the water right accounts.
For storage rights on in-line reservoirs, this is a Transfer In supply; for off-
stream storage rights, this is a Diversion supply to the passthrough account
on a Diversion object that supplies the off-stream storage right account. For
diversion rights, this is a Diversion supply.

A changing set of temporary slots (whose names begin with Temp) on the rights
is also returned, for use by RiverWare developers.

If no appropriation is to be made, a value of zero is returned so that old
appropriations that are no longer valid will be invalidated by this rule.

The SolveWaterRightsWithLags() predefined rule function works much like
SolveWaterRights(), but is used when the subbasin passthrough accounts
contain lags. It returns a list of {slot name, date-time, value} triplets, which the
rule uses to place the value in the appropriate slot at the appropriate timestep.
The timestep given will reflect the Local Timestep Offset of the account on
which the slot resides. It is some number of timesteps after the current rules-
controller timestep, and reflects the relationships of the account to other
accounts in the subbasin based on their respective cumulative lag times to the
end of the subbasin.

For detailed descriptions of the solution methods, see the Accounting Water
Rights documentation HERE (Accounting.pdf).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

177

RPL Predefined Functions
SolveWaterRights and SolveWaterRightsWithLags

177
Use Examples:
To cause all instream flow rights to compute their Available Allocatable Flow values:

FOREACH (LIST pair IN SolveWaterRights("Network", "Allocatable Flow",
 @"20:00:00 January 1, 1800")) DO
 (pair<0>)[] = pair<1>
ENDFOREACH

Use Examples:
To cause all instream flow rights to make calls, using their already-computed Available Allocatable Flow
slot values:

FOREACH (LIST pair IN SolveWaterRights("Network", "Allocatable Flow",
 @"20:00:00 December 31, 2030")) DO
 (pair<0>)[] = pair<1>
ENDFOREACH

Use Examples:
Or if lags are to be considered:

FOREACH (LIST triplet IN SolveWaterRightsWithLags("Network",
 "Allocatable Flow",
 @"20:00:00 December 31, 2030")) DO
 (triplet<0>)[triplet<1>] = triplet<2>
ENDFOREACH

Comments The calling rule is expected to make the assignments of the values to the slots.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

178

RPL Predefined Functions
Sort

178
176. Sort

Syntax Example:

Sort({ 1.0, {res1, 10}, "hello", 0.0, "bob"})

Syntax Example:

{ 0.0, 1.0, "bob", "hello", {res1, 10}}

Description Sort the items in a list.

Type LIST

Arguments Type Meaning

1 LIST a list of values to be sorted

Evaluation Returns a list with the same values as the input list, in increasing order.

Comments

Comparisons across type are defined by the following arbitrary ordering, on
which users are advised against relying:

BOOLEAN < NUMERIC < STRING < OBJECT < SLOT <

DATETIME < LIST

Within each type, ordering is as:

• BOOLEAN: TRUE < FALSE

• NUMERIC: values involving different dimensions are sorted by
lexicographic ordering on the names of the units; within values of the same
dimensionality, the sorting is based on standard numeric comparisons.

• STRING: Lexicographic ordering

• OBJECT: Lexicographic ordering on the object’s name

• SLOT: Lexicographic ordering on the slot’s name

• DATETIME: Same as RPL operator

• LIST: Based on comparison of items within the list (left to right).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

179

RPL Predefined Functions
SortPairsAscending, SortPairsDescending

179
177. SortPairsAscending, SortPairsDescending

Syntax Example:

SortPairsAscending({{"a", 10.0} , {"b", 2.0}, {"c", 5.0}, {"d", 10.0}})

Return Example:

 {"b", "c", "a", "d"}

Description Sort a list of two-item lists.

Type LIST

Arguments Type Meaning

1 LIST {LIST} the list of lists to be sorted.

Evaluation

The input list must be a list of lists, each member list must contain at least two
items. The pairs are sorted into ascending/descending order by the second
item’s value, and a list containing the first items of this sorted list of pairs is
returned. Duplicates are not removed.

Comments

Comparisons across type are defined by the following arbitrary ordering, on
which users are advised against relying:

BOOLEAN < NUMERIC < STRING < OBJECT < SLOT <

DATETIME < LIST

Within each type, ordering is as:

• BOOLEAN: TRUE < FALSE

• NUMERIC: values involving different dimensions are sorted by
lexicographic ordering on the names of the units; within values of the same
dimensionality, the sorting is based on standard numeric comparisons.

• STRING: Lexicographic ordering

• OBJECT: Lexicographic ordering on the object’s name

• SLOT: Lexicographic ordering on the slot’s name

• DATETIME: Same as RPL operator

• LIST: Based on comparison of items within the list (left to right).
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

180

RPL Predefined Functions
SourceAccountAndObject

180
178. SourceAccountAndObject

Syntax Example:

SourceAccountAndObject("ResA Fish to ReachB Fish")

Return Example:

{"Fish", %"ResA"}

179. Split

Syntax Example:

Split("ABabcdefABcdABcdef", "AB") = { "", "abcdef", "cd", "cdef" }
Split("ResA^MyAccount.Inflow", "^") = { "ResA", "MyAccount.Inflow" }

Description Given a supply (specified by name), returns a list containing the source
(upstream) account and object.

Type LIST {STRING, OBJECT}

Arguments Type Meaning

1 STRING The name of the supply.

Evaluation

Comments

Description Split a string up into component pieces.

Type LIST {STRING}

Arguments Type Meaning

1 STRING the primary string

2 STRING the separator string

Evaluation
This function returns a list of the strings which are contained within the primary
string and separated by the separator string. Where ambiguity exists the left
most occurrence of the separator string is used.

Comments It is an error for the separator string to be the empty string.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

181

RPL Predefined Functions
StorageToArea

181
180. StorageToArea

This function performs a lookup in a Reservoir object’s Elevation Volume Table based on a given
storage to determine the corresponding pool elevation. The function then uses this pool elevation for a
lookup in the Reservoir’s Elevation Area Table and evaluates to the corresponding area.

Description Find the area of a given reservoir with a given storage.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC storage

Evaluation

The storage argument is looked up in the Storage column of the Elevation
Volume Table of the reservoir object argument to determine the Pool Elevation.
If the exact storage is not in the table, the lookup performs a linear interpolation
between the two nearest bounding storages and their corresponding pool
elevations. The pool elevation is then looked up in the Pool Elevation column of
the Elevation Area Table to determine the Surface Area. If the exact elevation is
not in the table, another linear interpolation is performed. The function evaluates
to the computed surface area.

Mathematical
Expression

Comments

If the object is not a reservoir or the reservoir does not have an Elevation Area
Table, the function aborts the run with an error (CRSSEvaporationCalc,
DailyEvaporationCalc, PanAndIceEvaporation, heatBudgetEvaporation, or
InputEvaporation must be selected as the Evaporation and Precipitation
Category selected Method).

If the reservoir is a Slope Power Reservoir, the calculation is based only on level
storage and does not include any wedge storage effects.

This function will issue an error if the “Time Varying Elevation Volume” method,
HERE (Objects.pdf, Section 24.1.28.3), or “Time Varying Elevation Area” method,
HERE (Objects.pdf, Section 24.1.29.2),is selected. Instead, use the
StorageToAreaAtDate function described next.

pool elevation elevation lesser()
elevation greater() elevation lesser()–

storage greater() storage lesser()–
--

storage storage lesser()–()

×







+=

area area lesser()
area greater() area lesser()–

pool elevation greater() pool elevation lesser()–
--

pool elevation pool elevation lesser()–()×









+=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

182

RPL Predefined Functions
StorageToAreaAtDate

182
Syntax Example:

StorageToArea(%"WattsBar", 442.39 "1000 cfsday")

Return Example:

12203.231 "m2"

181. StorageToAreaAtDate

This function performs a lookup in the Reservoir object’s Elevation Volume Table or Elevation Volume
Table Time Varying based on a given storage and datetime and computes the corresponding pool
elevation. The function then uses this pool elevation for a lookup in the Reservoir’s Elevation Area Table
or Elevation Area Table Time Varying and evaluates to the corresponding surface area.
This function must be used when the Time Varying Elevation Volume method or Time Varying
Elevation Area is selected. Otherwise, the StorageToArea function can be used and no DATETIME
argument is required.

Description Find the surface area corresponding to a reservoir’s storage.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC storage

3 DATETIME the datetime at which to do the conversion
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

183

RPL Predefined Functions
StorageToAreaAtDate

183
Evaluation

On the specified reservoir object argument, if the “Time Varying Elevation
Volume” method is selected, HERE (Objects.pdf, Section 24.1.28.3), the
function will reference the Elevation Volume Table Time Varying table. The
function will select the appropriate column to use based on the datetime
argument. On timesteps that exactly match a modification date, the previous
column is used. The relationship changes at the end of that timestep and is
taken into account when the reservoir dispatches. For this algorithm the
previous timestep’s relationship is used.

Otherwise, the Elevation Volume Table is used.

Then, the storage argument is looked up in the appropriate storage column to
determine the elevation from the Pool Elevation column. If the exact elevation
is not in the table, the lookup performs a linear interpolation between the two
nearest bounding elevations and their corresponding surface areas.On the
specified reservoir object argument, if the “Time Varying Elevation Area”
method is selected, HERE (Objects.pdf, Section 24.1.29.2), the function will
reference the Elevation Area Table Time Varying table. The function will
select the appropriate column to use based on the datetime argument. On
timesteps that exactly match a modification date, the previous column is used.
The relationship changes at the end of that timestep and is taken into account
when the reservoir dispatches. For this algorithm the previous timestep’s
relationship is used.

Otherwise, the Elevation Area Table is used.

Then, the computed pool elevation is looked up in the Pool Elevation column
to determine the surface area from the appropriate column. If the exact
elevation is not in the table, the lookup performs a linear interpolation between
the two nearest bounding elevations and their corresponding surface areas.

Mathematical
Expression

Comments

If the object is not a reservoir, or the reservoir does not have an Elevation
Volume Table or Elevation Volume Table Time Varying AND Elevation Area
Table or Elevation Area Table Time Varying, the function aborts the run with
an error.

pool elevation elevation lesser()
elevation greater() elevation lesser()–

storage greater() storage lesser()–
--

storage storage lesser()–()

×







+=

area area lesser()
area greater() area lesser()–

pool elevation greater() pool elevation lesser()–
--

pool elevation pool elevation lesser()–()×









+=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

184

RPL Predefined Functions
StorageToElevation

184
Syntax Example:

StorageToAreaAtDate(%"Lake Mead", 10520217087.2 [m3], @”t”)

Return Example:

634547087.2 [m2]

182. StorageToElevation

This function performs a lookup in a Reservoir object’s Elevation Volume Table based on a given
storage and evaluates to the corresponding pool elevation.

Syntax Example:

StorageToElevation(%"WattsBar", 442.39 "1000 cfsday")

Return Example:

1792.25 "m"

Description Find the reservoir elevation at a given storage.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC storage

Evaluation

The storage argument is looked up in the Storage column of the
Elevation Volume Table of the reservoir object argument to determine
the Pool Elevation. If the exact storage is not in the table, the lookup
performs a linear interpolation between the two nearest bounding
storages and their corresponding elevation values.

Mathematical
Expression

Comments

If the object is not a reservoir, the function aborts the run with an error.

If the reservoir is a Slope Power Reservoir, the calculation is based only
on level storage and does not include any wedge storage effects.

This function will issue an error if the “Time Varying Elevation Volume”
method, HERE (Objects.pdf, Section 24.1.29.2), is selected. Instead, use
the StorageToElevationAtDate function described next.

pool elevation elevation lesser() +=

elevation greater() elevation lesser()–

storage greater() storage lesser()–
-- ×

storage storage lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

185

RPL Predefined Functions
StorageToElevationAtDate

185
183. StorageToElevationAtDate

This function performs a lookup in the Reservoir object’s Elevation Volume Table or Elevation Volume
Table Time Varying based on a given elevation and datetime and evaluates to the corresponding volume.
This function must be used when the “Time Varying Elevation Volume” method is selected. Otherwise,
the StorageToElevation function can be used and no DATETIME argument is required.

Description Finds the elevation corresponding to a reservoir’s storage.

Type NUMERIC

Arguments Type Meaning

1 OBJECT reservoir object

2 NUMERIC storage

3 DATETIME the datetime at which to do the conversion

Evaluation

On the specified reservoir object argument, if the “Time Varying Elevation
Volume” method is selected, HERE (Objects.pdf, Section 24.1.28.3), the
function will reference the Elevation Volume Table Time Varying table. The
function will select the appropriate column to use based on the datetime
argument. On timesteps that exactly match a modification date, the previous
column is used. The relationship changes at the end of that timestep and is
taken into account when the reservoir dispatches. For this algorithm, the
previous timestep’s relationship is used.

Otherwise, the Elevation Volume Table is used and the datetime is not used.

Then, the storage argument is looked up in the appropriate Storage column to
determine the Pool Elevation. If the exact elevation is not in the table, the
lookup performs a linear interpolation between the two nearest bounding
elevations and their corresponding storages.

Mathematical
Expression

Comments
If the object is not a reservoir, or the reservoir does not have an Elevation
Volume Table or Elevation Volume Table Time Varying, the function aborts
the run with an error.

pool elevation elevation lesser() +=

elevation greater() elevation lesser()–

storage greater() storage lesser()–
-- ×

storage storage lesser()–()
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

186

RPL Predefined Functions
Sum

186
Syntax Example:

StorageToElevationAtDate(%"Lake Mead", 634547087.2 [m3], @”t”)

Return Example:

1210.03 "ft"

184. Sum

This function sums a list of numbers.

Syntax Example:

Sum({1.0 [cfs], 2.0 [cms]})

Return Example:

71.629333443 "cfs"

185. SumAccountSlotsByWaterType

This function sums the values of all accounting slots of a given name on accounts of a given water type.

Description Sum a non-empty list of numbers.

Type NUMERIC

Arguments Type Meaning

1 LIST{NUMERIC} a list of numeric values.

Evaluation The numbers in the input list are added up, the total is returned.

Mathematical
Expression

Comments
If the input list is empty, one of the items in the list is not NUMERIC, or the
unit types of items in the list are incompatible, this function aborts the run
with an error.

Description The sum of slots of a given name and water type.

Type NUMERIC

Arguments Type Meaning

1 OBJECT the object on which to sum

total x
x input list∈
=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

187

RPL Predefined Functions
SumByIndex

187
Syntax Example:

SumAccountSlotsByWaterType(%"Heron Reservoir","RioGrande","storage",
@"t")

Return Example:

71629333.443 "m3"

186. SumByIndex

This function sums numbers at a given location within lists contained in a list.

2 STRING the water type of accounts to sum

3 STRING the name of the slots to sum

4 DATETIME the date at which to sum

Evaluation

The function contains two nested loops. The outer loop iterates over all of the
account types which may exist on the given object (Storage Account and/or
Passthrough Account or Diversion Account). For each account type, a list is
made of all of the accounts which are of the given water type.

The inner loop iterates over all of these accounts and sums the values of the
slots with the given name at the given time.

Mathematical
Expression

Comments

If the object cannot accept accounts, has no accounts, or has no accounts of
the given water type, this function aborts the run with an error.

If none of the accounts of the given water type has a slot with the given name,
or the slot is not a series slot, this function aborts the run with an error.

Any slots which contain a NaN at the given datetime are ignored for the
purpose of summation. If all of the slots contain NaNs at the given datetime, the
function forces an early termination of the calling rule.

If the given datetime argument does not land on an interval of the series slot,
this function aborts the run with an error.

Description
 Given a list of lists and an index, sum the values at the given index in each
list.

Type NUMERIC

Arguments Type Meaning

total object.slotnametimestep

account type account water type=()(,)
=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

188

RPL Predefined Functions
SumFlowsToVolume and SumFlowsToVolumeSkipNaN

188
Syntax Example:

SumByIndex({true, 2.0 [cms]}, {false, 1.0 [cms]}, 1.0)

Return Example:

3.0 "cms"

187. SumFlowsToVolume and SumFlowsToVolumeSkipNaN

This function sums a series slot’s FLOW values between a starting timestep and ending timestep and
evaluates to the corresponding volume of water.

1 LIST{LIST} a list of lists.

2 NUMERIC an index.

Evaluation All values located at the given index in each list contained within the input
list are summed, the total is returned.

Mathematical
Expression

Comments

The input list must be non-empty.

The index must be positive and a legal index for each of the lists contained
within the values list. For example, if the index value is 3, the sublists must
each contain at least 4 items.

All items being summed must be numeric and have compatible dimensions.

If any of these conditions is not met, this function aborts the run with an
error.

Description The volume equivalent of flows over time.

Type NUMERIC

Arguments Type Meaning

1 SLOT the series or periodic slot to sum

2 DATETIME the start date

3 DATETIME the end date

Evaluation

The function loops through all of the slot values between the start and end
datetime arguments. For each value, the flow is multiplied by the
corresponding timestep’s length to convert it to a volume before adding it to
the previous result. The function evaluates to the final result in units of "m3".

total xindex

x input list∈
=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

189

RPL Predefined Functions
SumFlowsToVolume and SumFlowsToVolumeSkipNaN

189
Syntax Example:

SumFlowsToVolume(Crystal.Inflow, @"January, 1999", @"September, 1999")

Return Example:

12.3023 "m3"

Mathematical
Expression

Comments

If the unit type of the slot argument is not FLOW or the starting or ending
datetime argument is not defined in the series slot, this function aborts the
run with an error.

For the SumFlowsToVolume function, if one of the slot values in the time
range is a NaN, the function forces an early termination of the calling rule.
The "SkipNaN" variation treats an invalid value (NaN) as 0.0.

For periodic slots, the dates used are those within the range and falling on a
run timestep and the column used is the first column.

volume flow slot() ttimestepΔ×()
start datetime end datetime–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

190

RPL Predefined Functions
SumFlowsToVolumeByCol and SumFlowsToVolumeByColSkipNaN

190
188. SumFlowsToVolumeByCol and
SumFlowsToVolumeByColSkipNaN

Syntax Example:

SumFlowsToVolumeByCol(Data.Coeff, @"January, 1999", @"September, 1999", 1)

Return Example:

12.231 "m3"

Description
This function sums a a column of a slot’s FLOW values between a starting
timestep and ending timestep and evaluates to the corresponding volume of
water

Type NUMERIC

Arguments Type Meaning

1 SLOT the Agg Series Slot or periodic slot to sum

2 DATETIME the start date

3 DATETIME the end date

4 NUMERIC the column (interpreted as a 0-based integral index)

Evaluation

The function loops through all of the slot values of the given column
between the start and end datetime arguments. For each value, the flow is
multiplied by the corresponding timestep’s length to convert it to a volume
before adding it to the previous result. The function evaluates to the final
result in units of "m3".

Mathematical
Expression

Comments

If the unit type of the given column of the slot is not FLOW or if the slot is an
Agg Series Slot and the starting or ending datetime argument is not defined
in the slot, this function aborts the run with an error.

For the SumFlowsToVolumeByCol function, if one of the slot values in the
time range is a NaN, the function forces an early termination of the calling
rule. The "SkipNaN" variation treats an invalid value (NaN) as 0.0.

For periodic slots, the dates used are those within the range and falling on a
run timestep.

volume flow slot() ttimestepΔ×()
start datetime end datetime–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

191

RPL Predefined Functions
SumObjectsAggregatedOverTime

191
189. SumObjectsAggregatedOverTime

This function returns a single numeric value obtained by summing several objects’ aggregated slot
values. The objects’ slot values may be aggregated as a SUM, AVG, MIN, or MAX over a specified time
range.

Description Sum several object’s values, each of which is the result of aggregating a
slot’s values over time.

Type NUMERIC

Arguments Type Meaning

1 STRING subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start date

7 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values to be aggregated are
of the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, each slot’s values are aggregated according to the aggregation
function argument over the time range of the datetime arguments. During
each of these slot aggregations, any values which do not satisfy the
aggregation filter argument are ignored.

Finally, all of the object’s aggregated slot values are summed

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

AggFunction obj() obj.slotname()[]t from start to end()∀()
obj in subbasin


RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

192

RPL Predefined Functions
SumObjectsAtEachTimestep

192
Syntax Example:

SumObjectsAggregatedOverTime("upper basin", "Inflow", "MAX","ALL", TRUE
@"October, Previous Year",
@"September, Current Year")

Return Example:

234.3 "cms"

190. SumObjectsAtEachTimestep

This function evaluates to a list. Each item of the list is a list comprised of the datetime at which the
summation was performed and the value of the sum.

Description Sum several object’s slot values, for each timestep in a range.

Type LIST{LIST{DATETIME, NUMERIC}}

Arguments Type Meaning

1 STRING subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start date

6 DATETIME end date

Evaluation

A list of slots is generated by searching all of the objects in the subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values to be summed are of
the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, all of the object’s slot values are summed, yielding one value for each
timestep in the time range of the datetime arguments. The function returns
a list of two items, where the first and second items of the inner lists are the
datetime and the summation value, respectively.

Mathematical
Expression

t obj.slotname
obj in subbasin
{ , }

t from start to end()

∀

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

193

RPL Predefined Functions
SumSlot and SumSlotSkipNaN

193
Syntax Example:

SumObjectsAtEachTimestep("upper basin", "Storage", "ALL", FALSE
@"October, Previous Year",
@"November, Previous Year")

Return Example:

{ {@"October 31, 2003", 32303.2"m3"} , {@"November 30, 2003", 43232.2"m3"}}

191. SumSlot and SumSlotSkipNaN

This function sums a series slot’s values between a starting timestep and ending timestep.

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort
 RiverWare with an error.

Description The sum of a slot’s values over time.

Type NUMERIC

Arguments Type Meaning

1 SLOT the series or periodic slot to sum

2 DATETIME the start date

3 DATETIME the end date

Evaluation The function loops through all of the slot values between the start and end
datetime arguments. Each value is added to the previous result.

Mathematical
Expression

Comments

If the starting or ending datetime argument is not defined in the series slot,
this function aborts the run with an error.

For the SumSlot function, if one of the slot values in the time range is a NaN,
the function forces an early termination of the calling rule. The "SkipNaN"
variation treats an invalid value (NaN) as 0.0.

For periodic slots, the dates used are those in the first column within the range
and falling on a run timestep.

volume slot valuet

start datetime end datetime–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

194

RPL Predefined Functions
SumSlotByCol and SumSlotByColSkipNaN

194
Syntax Example:

SumSlot(Crystal.Inflow, @"January 1, 1999", @"September 30, 1999")

Return Example:

32.47 "cms"

192. SumSlotByCol and SumSlotByColSkipNaN

Syntax Example:

SumSlotByCol(Data.Coeff, @"January 1, 1999", @"September 30, 1999", 2)

Return Example:

25.323

Description The sum the values in a column of a slot over a range of time.

Type NUMERIC

Arguments Type Meaning

1 SLOT the Agg Series Slot or periodic slot to sum

2 DATETIME the start date

3 DATETIME the end date

4 NUMERIC the column (interpreted as a 0-based integral index)

Evaluation
The function loops through all of the slot values in the given column between
the start and end datetime arguments. Each value is added to the previous
result.

Mathematical
Expression

Comments

If the slot is an Agg Series Slot and the starting or ending datetime argument
is not defined in the slot, this function aborts the run with an error.

For the SumSlotByCol function, if one of the slot values in the time range is a
NaN, the function forces an early termination of the calling rule. The
"SkipNaN" variation treats an invalid value (NaN) as 0.0.

For periodic slots, the dates used are those within the range and falling on a
run timestep.

volume slot valuet

start datetime end datetime–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

195

RPL Predefined Functions
SumTableColumn

195
193. SumTableColumn

This function evaluates to the sum of a table slot’s values, in the given column, from the given start row
to the given end row.

Syntax Example:

SumTableColumn(Chickamauga Data.Flow, 0, 0, 1)

Return Example:

13.95

194. SumTableRow

This function evaluates to the sum of a table slot’s values, in the given row, from the given start column
to the given end column.

Description Sum of the values of a table slot column between two rows.

Type NUMERIC

Arguments Type Meaning

1 SLOT the table slot whose values to sum

2 NUMERIC column

3 NUMERIC start row

4 NUMERIC end row

Evaluation

The function loops over each value in the given column of the given table slot,
beginning with the start row and ending with the end row (inclusive). Each
value is added to the previous sum. The function evaluates to this sum. Rows
and columns are numbered beginning with zero.

Mathematical
Expression

Comments

Units are not required for row and column indices and, if provided, will be
ignored. If the column, start row, or end row do not exist in the slot or if the
start row is greater than the end row, this function aborts the run with an
error. If one of the slot values within the desired time range is a NaN, the
function exits the rule with an early termination.

Description Sum of the values of a table slot row between two columns.

NUMERIC slot value row column,()

start row end row–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

196

RPL Predefined Functions
SumTimestepsAggregatedOverObjects

196
Syntax Example:

SumTableRow(Chickamauga Data.units, 0, 0, 1)

Return Example:

13.95

195. SumTimestepsAggregatedOverObjects

This function evaluates to a single numeric value, which is the sum over time of values resulting from
aggregating several objects slot values at each timestep.

Type NUMERIC

Arguments Type Meaning

1 SLOT the table slot whose values to sum

2 NUMERIC row

3 NUMERIC start column

4 NUMERIC end column

Evaluation

The function loops over each value in the given row of the given table slot,
beginning with the start column and ending with the end column (inclusive).
Each value is added to the previous sum. The function evaluates to this
sum. Rows and columns are numbered beginning with zero.

Mathematical
Expression

Comments

Units are not required for row and column indices and, if provided, will be
ignored. If the row, start column, or end column do not exist in the slot or if
the start column is greater than the end column, this function aborts the run
with an error. If one of the slot values within the desired time range is a NaN,
the function exits the rule with an early termination.

Description
Sum of a timeseries of values, each of which is the result of aggregating
several objects’ slot values.

Type NUMERIC

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation function ("SUM", "AVG", "MIN", or "MAX")

NUMERIC slot value row column,()

start column end column–

=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

197

RPL Predefined Functions
SumTimestepsForEachObject

197
Syntax Example:

SumTimestepsAggregatedOverObjects("upper basin","Inflow","SUM","ALL",
FALSE, @"October, Previous Year",
@"September, Current Year")

Return Example:

133.43 "cms"

196. SumTimestepsForEachObject

This function evaluates to a list. Each item of the list is a list comprised of the object name and the sum
of the slot values on that object for the time range specified.

4 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

5 BOOLEAN time conversion option ("TRUE" or "FALSE")

6 DATETIME start datetime

7 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the subbasin
argument for slots which match the slot name argument. If the time
conversion option argument is TRUE, and the values to be aggregated are
of the FLOW unit type, the values are multiplied by their corresponding
timestep length to convert them to values of the unit type VOLUME.

Next, all of the objects’ slot values are aggregated according to the
aggregation function argument for each timestep in the time range of the
datetime arguments. During each of these slot aggregations, any values
which do not satisfy the aggregation filter argument are ignored.

Finally, the timeseries of object aggregated slot values are summed.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot
values is not FLOW, RiverWare aborts the run with an error.

If none of the values for a slot satisfy the aggregation filter argument, the
"SUM" aggregation function yields an aggregated value of 0.0 for that slot,
while the "AVG", "MIN", and "MAX" aggregation functions abort RiverWare
with an error.

Description Sum a slot’s values over a time range, for each object in a subbasin.

Type LIST {LIST {OBJECT, NUMERIC}}

AggFunction t() obj.slotname()[]obj in subbasin()∀
t from start to end



RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

198

RPL Predefined Functions
SumTimestepsForEachObject

198
Syntax Example:

SumTimestepsForEachObject("upper basin", "Inflow", "ALL", TRUE,
@"October, Previous Year",
@"September, Current Year")

Return Example:

{ {%"Res1", 12.23"cms"}, {%"Reach2", 4.92 "cms"}, {%"Res2", 23.2 "cms"} }

Arguments Type Meaning

1 STRING Subbasin name

2 STRING slot name

3 STRING aggregation filter ("INPUT", "OUTPUT", or "ALL")

4 BOOLEAN time conversion option ("TRUE" or "FALSE")

5 DATETIME start datetime

6 DATETIME end datetime

Evaluation

A list of slots is generated by searching all of the objects in the Subbasin
argument for slots which match the slot name argument. For each object, the
slot’s values over every timestep in the range of the datetime arguments are
summed. Any values which do not satisfy the aggregation filter argument are
ignored during the calculation. If the time conversion option argument is
TRUE, and the values to be summed are of the FLOW unit type, the values
are first multiplied by their corresponding timestep length to convert them to
values of the unit type VOLUME.

Mathematical
Expression

Comments

If the time conversion option argument is TRUE, but the unit of the slot values
is not FLOW, this function aborts the run with an error. If none of the values
for a slot satisfy the aggregation filter argument, this function also aborts
RiverWare with an error.

obj obj.slotname
t from start to end()

{ , }
obj in subbasin()

∀

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

199

RPL Predefined Functions
SupplyAttributes

199
197. SupplyAttributes

Syntax Example:

SupplyAttributes("ResA One to ResB Two")

Return Example:

{"IrrigationWater", "FarmerB"}

Description Given a supply (specified by name), returns a list containing the supply’s
attributes, i.e., the supply’s release type and destination.

Type LIST {STRING, STRING}

Arguments Type Meaning

1 STRING The name of the supply.

Evaluation

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

200

RPL Predefined Functions
SupplyNamesFrom, SupplyNamesFrom1to1

200
198. SupplyNamesFrom, SupplyNamesFrom1to1

Syntax Example:

SupplyNamesFrom({{%"ResA","One"}, {%"ResB","One"}}, "Account Fill", "Abiquiu")

Return Example:

Description This function returns a list of names of Supplies which represent outflows from given
Accounts and which have the indicated ReleaseType and Destination.

Type LIST {STRING}

Arguments Type

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing
an Object and an Account Name of an Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the outflow Supplies which

 (1) link an Account on a different downstream Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplyNamesFrom, for each of these Accounts being considered, the
names of all related Supplies matching the criteria are added to the returned List. In
the case of SupplyNamesFrom1to1, there should be zero or one matching Supplies:

 (1) If there are no Supplies matching the criteria, then an empty string ("") is added
to the returned List, or

 (2) If there is exactly ONE Supply matching the criteria, then the name of that
Supply is added to the returned List, or

 (3) If there is more than one Supply matching the criteria, then an error is
generated.

In this way, the list returned by SupplyNamesFrom is guaranteed to contain exactly
one string for each Account in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered. If the
ReleaseType or the Destination argument is "ALL," then that Supply attribute is
ignored.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

201

RPL Predefined Functions
SupplyNamesFrom, SupplyNamesFrom1to1

201
SupplyNamesFrom: {"ResA One to ResB One", "ResB One to ResB Three"}
SupplyNamesFrom1to1: {"ResA One to ResB One"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

202

RPL Predefined Functions
SupplySlotsFrom, SupplySlotsFrom1to1

202
199. SupplySlotsFrom, SupplySlotsFrom1to1

Syntax Example:

SupplySlotsFrom({{%"ResA","One"},
 {%"ResB","Two"}}, "Account Fill", "Abiquiu")

Return Example:

SupplySlotsFrom: {$"ResA One to ResB One.Supply", $"ResA One to ResB Two.Supply"}
SupplySlotsFrom1to1: {$"ResA One to ResB One.Supply"}

Description This function returns a list of Supply slots of Supplies which represent outflows from
given Accounts and which have the indicated ReleaseType and Destination.

Type LIST {SLOT}

Arguments

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing an
Object and an Account Name of an Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the outflow Supplies which

 (1) link an Account on a different downstream Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplySlotsFrom, for each of these Accounts being considered, the
Supply slots of all related Supplies matching the criteria are added to the returned
List. In the case of SupplySlotsFrom1to1, there should be one matching Supply:

(1) If there are no Supplies matching the criteria, or more than one, then an error is
generated.

(2) If there is exactly ONE Supply matching the criteria, then the Supply slot of that
Supply is added to the returned List.

In this way, the list returned by SupplySlotsFrom1to1 is guaranteed to contain exactly
one slot for each Account in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered. If the
ReleaseType argument or the Destination argument is "ALL," then that Supply
attribute is ignored.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

203

RPL Predefined Functions
SupplyNamesFromIntra, SupplyNamesFromIntra1to1

203
200. SupplyNamesFromIntra, SupplyNamesFromIntra1to1

Syntax Example:

SupplyNamesFromIntra({{%"ResA","One"}, {%"ResA","Two"}}, "Account Fill",

Description
This function returns a list of names of Supplies which represent internal flows (i.e.
Transfer supplies) from given Accounts and which have the indicated ReleaseType
and Destination.

Type LIST {STRING}

Arguments

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing
an Object and an Account Name of an Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the outflow Supplies which:

 (1) link an Account on the SAME Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplyNamesIntra, for each of these Accounts being considered, the
names of all related Supplies matching the criteria are added to the returned List. In
the case of SupplyNamesIntra1to1, there should be zero or one matching Supplies:

 (1) If there are no Supplies matching the criteria, then an empty string ("") is added
to the returned List, or

 (2) If there is exactly ONE Supply matching the criteria, then the name of that
Supply is added to the returned List, or

 (3) If there is more than one Supply matching the criteria, then an error is generated.

In this way, the list returned by SupplyNamesIntra is guaranteed to contain exactly
one string for each Account specified in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered.

If the ReleaseType or the Destination argument is "ALL," then that Supply attribute is
ignored.

Comments ReleaseTypes and Destinations are properties of Supplies.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

204

RPL Predefined Functions
SupplyNamesFromIntra, SupplyNamesFromIntra1to1

204
"Abiquiu")

Return Example:

SupplyNamesFromIntra: {"ResA One to ResA Two", "ResA Two to ResA Three"}
SupplyNamesFromIntra1to1: {"ResA One to ResA Two"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

205

RPL Predefined Functions
SupplySlotsFromIntra, SupplySlotsFromIntra1to1

205
201. SupplySlotsFromIntra, SupplySlotsFromIntra1to1

Syntax Example:

SupplySlotsFromIntra({{%"ResA","One"}, {%"ResA","Two"}}, "Account Fill",
"Abiquiu")

Description
This function returns a list of Supply slots of Supplies which represent internal flows
(i.e. Transfer supplies) from given Accounts and which have the indicated
ReleaseType and Destination.

Type LIST {SLOT}

Arguments

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing
an Object and an Account Name of an Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the outflow Supplies which:

 (1) link an Account on the SAME Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplySlotsIntra, for each of these Accounts being considered, the
Supply slots of all related Supplies matching the criteria are added to the returned
List. In the case of SupplySlotsIntra1to1, there should be one matching Supply:

 (1) If there are no Supplies matching the criteria, or more than one, then an error is
posted.

 (2) If there is exactly ONE Supply matching the criteria, then the Supply slot of that
Supply is added to the returned List.

In this way, the list returned by SupplySlotsIntra1to1 is guaranteed to contain exactly
one slot for each Account in the input list.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered.

If the ReleaseType argument or the Destination argument is "ALL," then that Supply
attribute is ignored.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

206

RPL Predefined Functions
SupplySlotsFromIntra, SupplySlotsFromIntra1to1

206
Return Example:

SupplySlotsFromIntra: {$"ResA One to ResA Two.Supply", $"ResA Two to ResA
 Three.Supply"}
SupplySlotsFromIntra1to1: {$"ResA One to ResA Two.Supply"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

207

RPL Predefined Functions
SupplyNamesTo, SupplyNamesTo1to1

207
202. SupplyNamesTo, SupplyNamesTo1to1

Syntax Example:

SupplyNamesTo({{%"ResA","One"}, {%"ResB","Two"}}, "Account Fill", "Abiquiu")

Return Example:

Description This function returns a list of names of Supplies which represent inflows to given
Accounts and which have the indicated ReleaseType and Destination.

Type LIST {STRING}

Arguments Type

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing an
Object and an Account Name of an Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the inflow Supplies which

 (1) link an Account on a different upstream Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplyNamesTo, for each of these Accounts being considered, the
names of all related Supplies matching the criteria are added to the returned List. In
the case of SupplyNamesTo1to1, there should be zero or one matching Supplies:

 (1) If there are no Supplies matching the criteria, then an empty string ("") is added
to the returned List, or

 (2) If there is exactly ONE Supply matching the criteria, then the name of that Supply
is added to the returned List, or

 (3) If there is more than one Supply matching the criteria, then an error is generated.

In this way, the list returned by SupplyNamesTo is guaranteed to contain exactly one
string for each Account in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered.

If the ReleaseType argument or the Destination argument is "ALL," then that Supply
attribute is ignored.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

208

RPL Predefined Functions
SupplyNamesTo, SupplyNamesTo1to1

208
SupplyNamesTo: {"ReachA One to ResA One", "Reach A Two to ResB Two"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

209

RPL Predefined Functions
SupplySlotsTo, SupplySlotsTo1to1

209
203. SupplySlotsTo, SupplySlotsTo1to1

Syntax Example:

SupplySlotsTo({{%"ResA","One"}, {%"ResB","Two"}}, "Account Fill", "Abiquiu")

Description
This function returns a list of Supply slots of Supplies which represent
inflows to given Accounts and which have the indicated ReleaseType and
Destination.

Type LIST {SLOT}

Arguments

1
LIST { LIST {
OBJECT,
STRING } }

Source List: A List of pairs (represented as Lists)
containing an Object and an Account Name of an
Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of
those Accounts, we examine the inflow Supplies which

 (1) link an Account on a different upstream Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplySlotsTo, for each of these Accounts being considered,
the Supply slots of all related Supplies matching the criteria are added to
the returned List. In the case of SupplySlotsTo1to1, there should be one
matching Supply:

 (1) If there are no Supplies matching the criteria, or more than one, then
an error is generated.

 (2) If there is exactly ONE Supply matching the criteria, then the Supply
slot of that Supply is added to the returned List.

In this way, the list returned by SupplySlotsTo1to1 is guaranteed to contain
exactly one slot for each Account in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then
only Supplies having the default (unassigned) attribute of that type are
considered.

If the ReleaseType argument or the Destination argument is "ALL," then that
Supply attribute is ignored.

Comments
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

210

RPL Predefined Functions
SupplySlotsTo, SupplySlotsTo1to1

210
Return Example:

{$"ReachA One to ResA One.Supply", $"Reach A Two to ResB Two.Supply"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

211

RPL Predefined Functions
SupplyNamesToIntra, SupplyNamesToIntra1to1

211
204. SupplyNamesToIntra, SupplyNamesToIntra1to1

Syntax Example:

Description
This function returns a list of names of Supplies which represent internal flows (i.e.
Transfer supplies) to given Accounts and which have the indicated ReleaseType and
Destination.

Type LIST {STRING}

Arguments

1
LIST { LIST {
OBJECT, STRING }
}

Source List: A List of pairs (represented as Lists) containing
an Object and an Account Name of an Account on that
Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of those
Accounts, we examine the inflow Supplies which:

 (1) link an Account on the SAME Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplyNamesToIntra, for each of these Accounts being considered,
the names of all related Supplies matching the criteria are added to the returned
List. In the case of SupplyNamesToIntra1to1, there should be zero or one matching
Supplies:

 (1) If there are no Supplies matching the criteria, then an empty string ("") is added
to the returned List, or

 (2) If there is exactly ONE Supply matching the criteria, then the name of that
Supply is added to the returned List, or

 (3) If there is more than one Supply matching the criteria, then an error is
generated.

In this way, the list returned by SupplyNamesToIntra is guaranteed to contain exactly
one string for each Account specified in the Source List.

If the ReleaseType argument or the Destination argument is "NONE," then only
Supplies having the default (unassigned) attribute of that type are considered.

If the ReleaseType or the Destination argument is "ALL," then that Supply attribute is
ignored.

Comments ReleaseTypes and Destinations are properties of Supplies.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

212

RPL Predefined Functions
SupplyNamesToIntra, SupplyNamesToIntra1to1

212
SupplyNamesToIntra({{%"ResA","One"}, {%"ResA","Two"}}, "Account Fill",
"Abiquiu")

Return Example:

SupplyNamesToIntra: {"ResA One to ResA Two", "ResA Three to ResA Two"}
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

213

RPL Predefined Functions
SupplySlotsToIntra, SupplySlotsToIntra1to1

213
205. SupplySlotsToIntra, SupplySlotsToIntra1to1

Syntax Example:

SupplySlotsToIntra({{%"ResA","One"}, {%"ResA","Two"}}, "Account Fill",
"Abiquiu")

Return Example:

Description
This function returns a list of Supply slots of Supplies which represent
internal flows (i.e. Transfer supplies) to given Accounts and which have the
indicated ReleaseType and Destination.

Type LIST {SLOT}

Arguments

1
LIST { LIST {
OBJECT,
STRING } }

Source List: A List of pairs (represented as Lists)
containing an Object and an Account Name of an
Account on that Object.

2 STRING ReleaseType name or "NONE" or "ALL"

3 STRING Destination name or "NONE" or "ALL"

Evaluation

A temporary list of Accounts is created from the Source List. For each of
those Accounts, we examine the inflow Supplies which:

 (1) link an Account on the SAME Object, and

 (2) have the indicated ReleaseType, and

 (3) have the indicated Destination

In the case of SupplySlotsToIntra, for each of these Accounts being
considered, the Supply slots of all related Supplies matching the criteria are
added to the returned List. In the case of SupplySlotsToIntra1to1, there
should be one matching Supply:

 (1) If there are no Supplies matching the criteria, or more than one, then
an error is generated.

 (2) If there is exactly ONE Supply matching the criteria, then the Supply
slot of that Supply is added to the returned List.

In this way, the list returned by SupplySlotsToIntra1to1 is guaranteed to
contain exactly one slot for each Account in the input list.

If the ReleaseType argument or the Destination argument is "NONE," then
only Supplies having the default (unassigned) attribute of that type are
considered. If the ReleaseType argument or the Destination argument is
"ALL," then that Supply attribute is ignored.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

214

RPL Predefined Functions
TableInterpolation

214
SupplySlotsToIntra: {$"ResA One to ResA Two.Supply", $"ResA Three to ResA
 Two.Supply"}

206. TableInterpolation

This function performs a lookup in a given table slot, based on a given value in a given column, and
evaluates to the corresponding value in the other given column.

Description Table lookup with linear interpolation.

Type NUMERIC

Arguments Type Meaning

1 SLOT table slot in which to do lookup

2 NUMERIC "from" column

3 NUMERIC "to" column

4 NUMERIC value in "from" column

5 DATETIME datetime context for unit conversions

Evaluation

The value argument is looked up in the "from" column of the given table slot
to determine the corresponding value in the "to" column. If the exact value is
not in the table, the lookup performs a linear interpolation between the two
nearest bounding values in the "from" column and their corresponding values
in the "to" column.

Mathematical
Expression

Comments

If the given slot is not a table slot or if the "from" column or "to" column does
not exist in the table, the function aborts the run with an error. Column
numbers are zero based with a unit type of NONE. If the "from" value is not
the same unit type as the "from" column, or the "from" value is not between
the first and last value of the "from" column, the function aborts the run with
an error.

to value to value lesser()

to value greater() to value lesser()–

from value greater() from value lesser()–
--- from value from value lesser()–()+

=

RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

215

RPL Predefined Functions
TableInterpolation3D

215
Syntax Example:

TableInterpolation(Lake Mead.Elevation Volume Table, 0, 1,
1210.03 "ft", @"t")
TableInterpolation(Mead.Evaporation Table,
GetColumnIndex(Mead.Evaporation Table, "Julian Day"),
1, 1210.03 "ft", @"t")

Return Example:

234342422.32 "m"

207. TableInterpolation3D

This function performs a double interpolation using two columns of data, and a value for each column,
to compute the corresponding value in a third column of data. The data in the two columns used for the
double interpolation must be in ascending order.

Description Table lookup with double linear interpolation.

Type NUMERIC

Arguments Type Meaning

1 SLOT Table slot on which to do the lookup

2 NUMERIC
This is the column number (zero based) corresponding
to the first column of data in the table - the data to use
for the outer/first interpolation

3 NUMERIC The value to use for the first column

4 NUMERIC
This is the column number (zero based) corresponding
to the second column of data in the table - the data to
use for the inner/second interpolation

5 NUMERIC The value to use for the second column

6 NUMERIC
This is the column number of the third column of data in
the table - where the answer will be computed

7 DATETIME datetime context for unit conversions

Evaluation

Mathematical
Expression
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

216

RPL Predefined Functions
TableInterpolation3D

216
Syntax Example:

TableInterpolation3D(LowerReach.Interpolated GainLoss Table, 0,
GetDayOfYear(@"t"), 1, LowerReach.Inflow[], 2, @"t")

Return Example:

1.344

Comments

If the given slot is not a table slot or if the columns do not exist in the table,
the function aborts the run with an error. Column numbers are zero based
with a unit type of NONE. If a value is not the same unit type as the values in
the corresponding column, the function aborts the run with an error. If the
values in the table do not encompass the values passed into the function,
the function aborts the run with an error. Also, the values in the columns
used for both the inner and outer interpolations MUST BE IN ASCENDING
ORDER.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

217

RPL Predefined Functions
TableLookup

217
208. TableLookup

Syntax Example:

TableLookup(Lake Mead.Elevation Volume Table, 0, 1,
 1210.0 "ft", @"t", TRUE)

Return Example:

1323342 "acre-feet"

Description Table lookup to nearest value.

Type NUMERIC

Arguments Type Meaning

1 SLOT table slot in which to do lookup

2 NUMERIC "from" column

3 NUMERIC "to" column

4 NUMERIC value in "from" column

5 DATETIME datetime context for unit conversions

5 BOOLEAN whether to round up (or down)

Evaluation

The value argument is looked up in the "from" column of the given table slot
to determine the corresponding value in the "to" column. If the round up
argument is true and exact value is not in the table, the lookup finds the row
whose value is the smallest value larger than the lookup value and returns
the value in that row’s "to" column. If the round up argument is false and the
exact value is not in the table, the lookup finds the row whose value is the
largest value smaller than the lookup value and returns the value in that
row’s "to" column.

Comments

Error conditions which will lead to an error diagnostic and cause the run to
halt include: the given slot is not a table slot, one of the two column indices
are not valid for the table, the lookup value has units which are inconsistent
with the from column of the table, or the search value is not contained within
the table. Column numbers are zero based with a unit type of NONE.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

218

RPL Predefined Functions
TargetHWGivenInflow

218
209. TargetHWGivenInflow

This function computes the outflow required to meet a specified Pool Elevation at a specified future
timestep. It performs a lumped mass balance across several timesteps specified as a target range. This
function only works with Storage Reservoirs and Level Power Reservoirs.

Description Computes the outflow required to meet a target pool elevation

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir on which to perform the calculation

2 DATETIME the target begin date

3 DATETIME the target date (target end date)

4 NUMERIC the target pool elevation value

5 NUMERIC the total inflow volume over the target range

6 NUMERIC
the previous storage value (before the target begin
date)

Evaluation

This function takes the target pool elevation value and converts it to a
storage. This is the storage value desired at the target date. The difference
between the target storage and the previous storage is the change in
storage over the target range. Since the total inflow volume over the target
range is given as an argument, the total outflow volume can be computed.

Side flows are automatically included in the mass balance computation and
thus should not be included in the inflow value provided in Argument 5.
These include Hydrologic Inflow Net, Diversion, Return Flow, Canal
Flow, Flow FROM Pumped Storage, and Flow TO Pumped Storage. If
any of the side flow slots contain NaN on one of the target period timesteps,
the value will be assumed to be zero on that timestep. Other sources and
sinks, such as Evaporation, Precipitation, Bank Storage and Seepage
are NOT included in the mass balance computation.

The total outflow volume is then converted to a flow rate and divided by the
number of timesteps in the target range. The result is a single timestep
outflow value. This value needs to be set on the outflow slot for every
timestep in the target range in order to meet the target pool elevation.

Mathematical
Expression

Outflow Volume Previous Storage Target Storage
Inflow Volume Side Flows+ +

–=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

219

RPL Predefined Functions
TargetSlopeHWGivenInflow

219
Syntax Example:

TargetHWGivenInflow(Lake Mead, @"24:00 January 1, 2002",
@"24:00 January 5, 2002", 1200 "ft", 70,000 "acre-ft",
Lake Mead.Storage[@"24:00 December 31, 2002")

Return Example:

23.43 "cms"

210. TargetSlopeHWGivenInflow

This function computes the outflow required to meet a specified Pool Elevation at a specified future
timestep. It performs a lumped mass balance across several timesteps specified as a target range. This
function should be used with Slope Power Reservoirs.

Comments

This function is intended to be used with Storage Reservoirs and Level
Power Reservoirs. If using a Slope Power Reservoir, the
TargetSlopeHWGivenInflow function should be used. Target operations
cannot be done on a Pump Storage Reservoir.

This function will issue an error if the “Time Varying Elevation Volume”
method, HERE (Objects.pdf, Section 24.1.29.2), is selected and the target
begin and end dates bound a table modification date.

Description Computes the outflow required to meet a target pool elevation

Type NUMERIC

Arguments Type Meaning

1 OBJECT the reservoir on which to perform the calculation

2 DATETIME the target begin date

3 DATETIME the target date (target end date)

4 LIST
the inflow values over the target range (there should be
one value for each date in the target range)

5 NUMERIC the target pool elevation value

6 NUMERIC
the previous pool elevation value (before the target begin
date)

7 NUMERIC the previous storage value (before the target begin date)
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

220

RPL Predefined Functions
TargetSlopeHWGivenInflow

220
Syntax Example:

TargetSlopeHWGivenInflow(Lake Mead, @"24:00 January 1, 2002",
@"24:00 January 5, 2002",
{7500 "cfs", 7750 "cfs", 8125 "cfs", 8200 "cfs", 7900 "cfs"}, 1200 "ft", Lake
Mead.Pool Elevation[@"24:00 December 31, 2002",
Lake Mead.Storage[@"24:00 December 31, 2002")

Return Example:

23.43 "cms"

Evaluation

This function takes the target pool elevation value and converts it to a
storage. This is an iterative procedure because there is not a one to one
relationship between pool elevation and storage on a slope power reservoir.
Once the target storage value has been computed, the change in storage
over the target range is determined. Since the total inflow volume over the
target range is given as an argument, the total outflow volume can be
computed.

Side flows are automatically included in the mass balance computation and
thus should not be included in the inflow value provided in Argument 4.
These include Inflow 2, Hydrologic Inflow Net, Diversion, Return Flow,
Canal Flow, Flow FROM Pumped Storage, and Flow TO Pumped Storage.
If any of the side flow slots contain NaN on one of the target period
timesteps, the value will be assumed to be zero on that timestep. Other
sources and sinks, such as Evaporation, Precipitation, Bank Storage and
Seepage are NOT included in the mass balance computation.

The total outflow volume is then converted to a flow rate and divided by the
number of timesteps in the target range. The result is a single timestep
outflow value. This value needs to be set on the outflow slot for every
timestep in the target range in order to meet the target pool elevation.

Mathematical
Expression

Comments

Outflow Volume Previous Storage Target Storage
Inflow Volume Side Flows+ +

–=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

221

RPL Predefined Functions
ToCelsius, ToFahrenheit, ToKelvin

221
211. ToCelsius, ToFahrenheit, ToKelvin

Syntax Example:

ToCelsius(63.23 “F”) = 17.35 “C”
ToFahrenheit(290.5 “K”) = 63.23 “F”

212. VolumeToFlow

This function evaluates to the average flow of water over a timestep, which corresponds to a given
volume of water.

Description Convert a temperature to a given temperature scale.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC the temperature to convert

Evaluation These functions take as input a numeric value representing a temperature
in some scale and return the equivalent value in another scale.

Comments It is an error to try to convert a value that is not a temperature (i.e., is not in
units of degrees Celsius, degrees Fahrenheit, or Kelvin.

Description The steady flow over a timestep corresponding to a volume.

Type NUMERIC

Arguments Type Meaning

1 NUMERIC volume to be converted

2 DATETIME timestep over which to convert

Evaluation
The number of seconds in the timestep of the datetime argument is
determined. Then, the volume argument is divided by this number of
seconds.

Mathematical
Expression

Comments None

flow volume
t current timestep()Δ

---=
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

222

RPL Predefined Functions
WaterOwners

222
Syntax Example:

VolumeToFlow($"Jemez Reservoir.Storage"[], @"t")

Return Example:

23203.231 "cms"

213. WaterOwners

This function evaluates to a list of all user-defined WaterOwners.

Syntax Example:

WaterOwners()

Return Example:

{"IrrigationDistA","IrrigationDistB"}

214. WaterTypes

This function evaluates to the list of user-defined WaterTypes

Description This function returns a list of the names of all WaterOwners defined in the
Water Accounting System Configuration.

Type LIST {STRING}

Arguments Type Meaning

Evaluation

Comments
WaterOwners are properties of Accounts. The returned list does not
include the default ("NONE") WaterOwner.

Description This function returns a list of the names of all WaterTypes defined in the
Water Accounting System Configuration.

Type LIST {STRING}

Arguments Type Meaning

Evaluation

Comments WaterTypes are properties of Accounts. The returned list does not include
the default ("NONE") WaterType.
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

223

RPL Predefined Functions
WeightedSum

223
Syntax Example:

WaterTypes()

Return Example:

{"CityWater", "Farmer1", "Farmer2"}

215. WeightedSum

This function computes the normalized weighted sum of a list of numbers.

Syntax Example:

WeightedSum({2.0 [m], 13.12 [ft]}, {0.5, 0.5})

Return Example:

= 2.99 [m]

Description The normalized weighted sum of a list of numbers.

Type NUMERIC

Arguments Type Meaning

1
LIST
{NUMERIC}

the values to be summed

2
LIST
{NUMERIC}

the weights of the values

Evaluation The following mathematical expression is computed and returned.

Mathematical
Expression

Comments

All values must have the same dimensionality but may have different units
(e.g., all values could be flows, but some in units of cms and others in cfs).
Similarly, all weights must have the same dimensionality. Currently, if the
dimensionality of the values or weights involves temperature, then all items
in that list must have identical units (e.g., it would not be permitted for some
values to have units of Celsius/meter and others to have units of Fahrenheit/
meter).

weighti valuei⋅
i


weighti

i


--
RiverWare Technical Documentation: RPL Predefined Functions
Revised: 7/17/18

	Search All
	Search This Document
	Main Menu
	¯¯¯¯¯¯¯¯¯¯
	RPL Predefined Functions
	1. Abs
	2. AccountAttributes
	3. AccountNameFromPriorityDate
	4. AccountNamesByAccountType
	5. AccountNamesByWaterOwner
	6. AccountNamesByWaterType
	7. AccountNamesFromObjReleaseDestination and AccountNamesFromObjReleaseDestinationIntra
	8. AccountPriorityDate
	9. AnnualEventCount
	10. AnnualEventLastOccurrence
	11. AnnualEventStats
	12. AvgObjectsAggregatedOverTime
	13. AvgObjectsAtEachTimestep
	14. AvgTimestepsAggregatedOverObjects
	15. AvgTimestepsForEachObject
	16. Ceiling
	17. ColumnLabel
	18. ColumnLabels
	19. CompletePartialDate
	20. ComputeReservoirDiversions
	21. DateMax
	22. DateMin
	23. DatesInPeriod
	24. DateToNumber
	25. Destinations
	26. DestinationsFromObjectReleaseType
	27. DispatchCount
	28. DispatchEndDate
	29. DispatchTime
	30. Div
	31. ElevationToArea
	32. ElevationToAreaAtDate
	33. ElevationToMaxRegulatedSpill
	34. ElevationToStorage
	35. ElevationToStorageAtDate
	36. ElevationToUnregulatedSpill
	37. Exp
	38. FilterByObjType
	39. FlattenList
	40. FloodControl
	41. Floor
	42. FlowToVolume
	43. Fraction
	44. Get3DTableVals
	45. Get3DTableValsSkipNaN
	46. GetAccountFromSlot
	47. GetAllNamedBasins
	48. GetColMapVal
	49. GetColumnIndex
	50. GetDate
	51. GetDates
	52. GetDatesCentered
	53. GetDayOfMonth
	54. GetDayOfYear
	55. GetDaysInMonth
	56. GetDisplayVal
	57. GetDisplayValByCol
	58. GetElementName
	59. GetEnsembleTraceValue
	60. GetEnsembleValue
	61. GetJulianDate
	62. GetLinkedObjs
	63. GetLowerBound
	64. GetLowerBoundByCol
	65. GetMaxOutflowGivenHW
	66. GetMaxOutflowGivenInflow
	67. GetMaxOutflowGivenStorage
	68. GetMaxReleaseGivenInflow
	69. GetMinSpillGivenInflowRelease
	70. GetMonth
	71. GetMonthAsString
	72. GetNumbers
	73. GetObject
	74. GetObjectDebt
	75. GetObjectFromSlot
	76. GetPaybackDebt
	77. GetRowIndex
	78. GetRowIndexByDate
	79. GetRunCycleIndex
	80. GetRunIndex
	81. GetSelectedUserMethod
	82. GetSeriesSlots
	83. GetSlot
	84. GetSlotName
	85. GetSlotVals and GetSlotValsNaNToZero
	86. GetSlotValsByCol and GetSlotValsByColNaNToZero
	87. GetTableColumnVals & GetTableColumnValsSkipNaN
	88. GetTableRowVals & GetTableRowValsSkipNaN
	89. GetTimestep
	90. GetUpperBound
	91. GetUpperBoundByCol
	92. GetYear
	93. GetYearAsString
	94. HasFlag
	95. HasRuleFiredSuccessfully
	96. HydropowerRelease
	Hypothetical Simulation Overview
	97. HypSim
	98. HypLimitSim
	99. HypLimitSimWithStatus
	100. HypTargetSim
	101. HypTargetSimWithStatus
	102. IntegerToString
	103. IntegerWithUnitsToString
	104. IsControllerRBS
	105. IsEven
	106. IsInput
	107. IsOdd
	108. LeapYear
	109. ListDownstreamObjects
	110. ListSlotSet
	111. ListSubbasin
	112. Ln
	113. Log
	114. Max
	115. MaxItem
	116. MaxObjectsAggregatedOverTime
	117. MaxObjectsAtEachTimestep
	118. MaxTimestepsAggregatedOverObjects
	119. MaxTimestepsForEachObject
	120. MeetLowFlowRequirement
	121. MemoryUsage
	122. Min
	123. MinItem
	124. MinObjectsAggregatedOverTime
	125. MinObjectsAtEachTimestep
	126. MinTimestepsAggregatedOverObjects
	127. MinTimestepsForEachObject
	128. Mod
	129. NetNonShortDiversionRequirement
	130. NetSubbasinDiversionRequirement
	131. NextDate
	132. NumberToDate
	133. NumberToYear
	134. NumColumns/NumRows
	135. ObjAcctSupplyByWaterTypeRelTypeDestType
	136. ObjectAttributeValue
	137. ObjectHasAttributeValue
	138. ObjectiveValue
	139. ObjectsFromAccountName
	140. ObjectsFromAttributeValue
	141. ObjectsFromWaterType
	142. OffsetDate
	143. OperatingHeadToMaxRelease
	144. OptDualPrice
	145. OptReducedCost
	146. OptReducedCostByCol
	147. OptValue
	148. OptValueByCol
	149. OptValuePiecewise
	150. Percentile
	151. PercentRank
	152. PreviousDate
	153. RanDev
	154. Random, RandomNormal
	155. ReleaseTypes
	156. ReleaseTypesFromObject
	157. ResetRanDev
	158. Reverse
	159. RowLabel
	160. RowLabels
	161. RunStartDate and RunEndDate
	162. RunTime
	163. SlotCacheValue
	164. SlotCacheValueByCol
	165. SlotWeightedAverageOverTime
	166. SolveInflow
	167. SolveOutflow
	168. SolveOutflowGivenEnergyInflow
	169. SolveShortage
	170. SolveSlopeStorageGivenInflowHW
	171. SolveSlopeStorageGivenInflowOutflow
	172. SolveStorage
	173. SolveSubbasinDiversions
	174. SolveTurbineRelGivenEnergyInflow
	175. SolveWaterRights and SolveWaterRightsWithLags
	176. Sort
	177. SortPairsAscending, SortPairsDescending
	178. SourceAccountAndObject
	179. Split
	180. StorageToArea
	181. StorageToAreaAtDate
	182. StorageToElevation
	183. StorageToElevationAtDate
	184. Sum
	185. SumAccountSlotsByWaterType
	186. SumByIndex
	187. SumFlowsToVolume and SumFlowsToVolumeSkipNaN
	188. SumFlowsToVolumeByCol and SumFlowsToVolumeByColSkipNaN
	189. SumObjectsAggregatedOverTime
	190. SumObjectsAtEachTimestep
	191. SumSlot and SumSlotSkipNaN
	192. SumSlotByCol and SumSlotByColSkipNaN
	193. SumTableColumn
	194. SumTableRow
	195. SumTimestepsAggregatedOverObjects
	196. SumTimestepsForEachObject
	197. SupplyAttributes
	198. SupplyNamesFrom, SupplyNamesFrom1to1
	199. SupplySlotsFrom, SupplySlotsFrom1to1
	200. SupplyNamesFromIntra, SupplyNamesFromIntra1to1
	201. SupplySlotsFromIntra, SupplySlotsFromIntra1to1
	202. SupplyNamesTo, SupplyNamesTo1to1
	203. SupplySlotsTo, SupplySlotsTo1to1
	204. SupplyNamesToIntra, SupplyNamesToIntra1to1
	205. SupplySlotsToIntra, SupplySlotsToIntra1to1
	206. TableInterpolation
	207. TableInterpolation3D
	208. TableLookup
	209. TargetHWGivenInflow
	210. TargetSlopeHWGivenInflow
	211. ToCelsius, ToFahrenheit, ToKelvin
	212. VolumeToFlow
	213. WaterOwners
	214. WaterTypes
	215. WeightedSum

	Main Menu
	Search This Document
	Search All

