
Technical Documentation Version 7.3
The
may
mec
righ

The
this
or p
RPL Language
Structure
se documents are copyrighted by the Regents of the University of Colorado. No part of this document
 be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic,
hanical, recording or otherwise without the prior written consent of The University of Colorado. All
ts are reserved by The University of Colorado.

 University of Colorado makes no warranty of any kind with respect to the completeness or accuracy of
 document. The University of Colorado may make improvements and/or changes in the product(s) and/
rograms described within this document at any time and without notice.

RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

RPL Language Structure
Table of Contents

Introduction ..1

Requirements for the Riverware Policy Language (RPL)1

Imperative versus Functional Programming ..2

Imperative Programming Paradigm ... 2
Referential Transparency .. 3
Functional Programming Paradigm ... 3
Examples .. 4

RiverWare Policy Language: A Hybrid Approach7

RPL Language Structure
RPL Language StructureRPL Language Structure

1. Introduction

One of the main goals of the RiverWare modeling system is to provide a way to express operating
policy separate from the physical process model. Many older basin management models were
“dedicated” software - they integrated complex operating policies into the code, intermingled with the
code for the physical processes. This allowed ultimate flexibility and detail for the operations.
Typically, general modeling tools allow only the specification of simple policies like guide curves.
RiverWare allows complex policies to be expressed in a general modeling framework. That is achieved
by providing a programming language within RiverWare with which the modeler can express policy.
The policy statements are interpreted at runtime and the policies interact with the simulation to drive
the solution.

2. Requirements for the Riverware Policy Language (RPL)

The requirements for the language are
• that it be rich enough to express even the most complex operating policies,
• that it be an interpreted language, and
• that it can interact with RiverWare, primarily in being able to read and set slots in the model.
In the prototype development, Tcl (Tool Command Language) was used as the rule language. Tcl is a
complete interpreted programming language that meets the requirements above (an interface was
developed to allow Tcl to access model values, timesteps, etc.). Through observation of the use of that
language, requirements for a more user-friendly language were developed. These included
• that the language be easy to read, so that interested parties can look at the logic and understand the pol-

icy relatively easily,
• that the language be relatively easy to formulate, so the modeler does not have to learn a new complex

programming language,
• that the modeler does not have to “debug” spelling and similar syntax issues, i.e., that a syntax-

directed editor is provided to ensure creation of valid expressions, and
• that performance of the interpretation and application of the language be fast enough for acceptable

runtimes.
Based on these needs, the RiverWare Policy Language (RPL) was then developed. One of the primary
design decisions for RPL was that it be, to a large extent, a functional programming language. This
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

2

Imperative versus Functional Programming
Imperative Programming Paradigm

2

section describes the main characteristics of functional languages, how they differ from imperative
languages like FORTRAN or C, and takes you through some exercises in formulating logic using this
approach.

3. Imperative versus Functional Programming

3.1 Imperative Programming Paradigm

Imperative (also called procedural) programming languages such as FORTRAN and C have been in use
for a long time, and most engineers in the water management domain are familiar with the concepts.
The structure of imperative, or statement-oriented languages is dominated by imperative statements,
which, when evaluated in a given sequence, achieve the desired results of the program.
This type of language evolved as a natural extension of the Von Neumann computer architecture. Such
languages are characterized by the existence of variables, the possibility of assigning values to
variables, and mechanisms for repetition (iteration), mirroring the three computer architectural
concepts of memory cells, storing or assigning values to memory cells, and the repetition of a set of
instructions which are stored in memory.
The following example illustrates a how an imperative programming language might be used to
implement a portion of a water management policy:

In this example Inflow, Outflow, and Pool_Elevation are global variables, that is, any part of
the code can read from or write values to these memory locations. The first several statements provide
these memory locations with initial values. Then a subroutine is called to perform the “surcharge
release” computation. We don’t know what that computation is, but we can guess that is sets Outflow
and Pool_Elevation to reflect high priority policy considerations. It could do other things as well,
like modify other values (e.g., Storage). Next, another routine is called which performs the “flood
release” computation. Again, we don’t know what this routine does, but perhaps it might readjust the
values set by the SurchargeRelease routine to manage flooding scenarios.

Memory locations

Inflow
Outflow

Policy Fragment:

 Inflow = 100.0
 Outflow = 0.0
 Pool_Elevation = 0.0
 SurchargeRelease()
 FloodRelease()

Pool_Elevation
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

3

Imperative versus Functional Programming
Referential Transparency

3

The use of memory locations is a key aspect of imperative programs. The two subroutines executed by
the program fragment above presumably takes advantage of the memory locations corresponding to the
global variables by reading them to get their values and assigning values to them.
Two advantages of the imperative programming approach are that programs tend to be efficient
(because the program organization mirrors the machine architecture) and most water resources
engineers are accustomed to this style of computation.

3.2 Referential Transparency

Imperative languages have a problem related to the issue of referential transparency. A system is said
to be referentially transparent if the meaning of the whole can be determined solely from the meaning
of its parts. Mathematical expressions are referentially transparent. Imperative languages are not
referentially transparent because the value of a variable or the meaning of an expression (result of its
evaluation) depends on the history of computation. Assignment statements, parameters passed by
reference, and global variables are the main reasons that imperative languages are not referentially
transparent. The lack of referential transparency means that it is possible to create programs which are
difficult to read, modify and prove correct.

3.3 Functional Programming Paradigm

A functional language, by contrast, makes use of the mathematical properties of functions. Recall from
mathematics that a function is a mapping from a set of values in some domain to a single value. Thus
f(x,y,z) evaluates to a single value when specific values are given to x, y and z. A purely function
programming language performs all of its computations by evaluating functions, i.e., by evaluating for
various inputs the mathematical expressions which define the functions.
Notice that this description of purely functional programming languages contains no reference to
memory locations. Since there is no setting of values in memory when evaluating a mathematical
function, there are no hidden “side effects.” This lack of side effects allows functions to be combined
hierarchically with predictable results. Knowledge of all the effects and predictability of the results
makes the functional approach referentially transparent.
Let’s look at how the policy fragment from above might be written in a more functional manner:

Inflow = 100.0
Outflow = SurchargeRelease(Inflow)
Pool_Elevation = MassBalance(Inflow, Outflow)
Outflow = FloodRelease(Inflow)
Pool_Elevation = MassBalance(Inflow, Outflow)

If we allow functions to read (but not write!) global memory locations, then we don’t need to pass the
inputs to the function in explicitly, and this policy fragment might be written:

Inflow = 100.0
Outflow = SurchargeRelease()
Pool_Elevation = MassBalance()
Outflow = FloodRelease()
Pool_Elevation = MassBalance()
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

4

Imperative versus Functional Programming
Examples

4

This code is quite similar to the original code fragment, but a couple of differences from the original
code are worth highlighting. First, since a function produces only one return value, the functional
computation requires separate functions for computing the value of Outflow and
Pool_Elevation. Thus the SurchargeRelease function now only computes Outflow, and we
have introduced the MassBalance function, which uses Inflow and Outflow to compute the
Pool_Elevation.
Note also that this code is not strictly “functional” -- we have retained from the original imperative
program the idea of statements which assign values to memory locations, however we have moved the
assignments to the outermost level. If we further stipulate that evaluating the three functions have no
side effects (simply compute a value and don’t change any memory locations), then this policy
fragment becomes quite easy to read and understand. That is, it is immediately obvious which portions
of the policy are affecting Outflow, which Pool_Elevation, and so on.
This is the philosophy of the RPL in a nutshell: restrict the setting of global values (slot or model
values) to the outermost level of policy statements, all other policy computation is via function and
expression evaluation. The key aspects of function and expression evaluation are:
• functions operate on zero or more input values
• functions evaluate to a single value (or to a list of values, considered a single item)
• global memory values are not affected

The advantages of this approach are that we can easily see where and how values are computed. We can
look at the functions to see what they do; there are no hidden side effects.

3.4 Examples
The purpose of the following examples is to familiarize the reader with RPL’s approaching to describing computation and to
provide the opportunity to practice this style of problem-solving.

1. The following subroutine finds the square of a number.
SUBROUTINE Square(FLOAT a, FLOAT answer)

answer = a * a
END

Here is the same program written as a RPL function:

2. The following imperative-style function finds the minimum of two numbers.
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

5

Imperative versus Functional Programming
Examples

5

FUNCTION Min(FLOAT a, FLOAT b)
FLOAT answer
IF (a < b)

 answer = a
ELSE

 answer = b
END IF
RETURN answer

END

Here is the same function implemented within RPL:

Note that the RPL IF expression evaluates to a single value, as do all functions and expressions.

3. The following procedure takes an array of numFlows flow values and returns the sum of these flows:

SUBROUTINE SumFlows(FLOAT ARRAY flows,
INTEGER numFlows,
FLOAT total)

INTEGER i = 0
total = 0
WHILE (i < numFlows)
total = total + flows[i]
i = i + 1
END WHILE

END

Here is RPL code which accomplishes the same task:
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

6

Imperative versus Functional Programming
Examples

6

Again, it is worth noting that the FOR expression evaluates to a single value.
Steps in evaluation of a FOR expression:

•the list expression is evaluated
•the initialization expression is evaluated and the result is assigned to the loop variable
•the first/next item in the result of evaluating the list expression is assigned to the index variable
•the body is evaluated and the result is assigned to the loop variables
•if there are more values in the result of evaluating the list expression, return to the third step
•return the value of the loop variable

4. The following procedure takes an array of numFlows reservoir releases and returns the minimum of these values:

SUBROUTINE GetMinRelease(FLOAT ARRAY flows,
INTEGER numFlows,
FLOAT min)

min = flows[0]
INTEGER i = 1
WHILE (i < numFlows)
IF (min > flows[i])

min = flows[i]
END IF
i = i + 1
END WHILE

END

The RPL version illustrates how iteration can be framed as an expression which evaluates to a single value (and uses the
Min function defined above):

5. Given the pool elevation of numRes reservoirs, the following subroutine counts the number of reservoirs whose pool ele-
vation is below a certain threshold:

SUBROUTINE CountLowReservoirs(FLOAT ARRAY PEs,
INTEGER numRes,

FLOAT threshold,
INTEGER resCount)

resCount = 0
INTEGER i = 0
WHILE (i < numRes)
IF (PEs[i] < threshold)
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

7

RiverWare Policy Language: A Hybrid Approach
Examples

7

resCount = resCount + 1
END IF
i = i + 1
END WHILE

END

Here is one possible solution:

6. To illustrate the use of some of RPL’s built-in list operations, consider a variation on the previous example, in which we
would like a list of the reservoirs whose pool elevation is below a certain threshold:

4. RiverWare Policy Language: A Hybrid Approach

The requirements of RPL point to an ideal language which has some elements of both imperative and
functional programming languages. For example, the ultimate purpose of RPL as the rule language is to
set slots in the model in order to drive the simulation. Therefore, it is necessary to have assignment
statements, particularly to slots. The slots in the model maintain the state of the system for the rules,
thus are analogous to values in memory. To maintain clarity of meaning for rule assignments, all
assignments are done at the very top level of the rules. In fact, rules contain only slot assignment
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

8

RiverWare Policy Language: A Hybrid Approach
Examples

8

statements and print statements. Each slot is assigned the result of an expression or function evaluation,
No slot assignments are “hidden” in lower level functions.
RiverWare rules have the form:

Object.slot[timestep] = <expression>

where the expression could contain complex logic or be as simple as a single function call.
The rules need to look at the current state of the model, so the language must have the ability to read
slot values from memory. This does not diminish the referential transparency of the rules because slot
values in the model can never change while a rule is executing. Data that is associated with policy, for
example reservoir guide curves and minimum flow values, are kept in custom slots in the model.
Beyond the assignments to slots, policy computation is performed exclusively by evaluating functions
and expressions, providing the benefits of being able to follow the meaning of the rule and not having
hidden side effects. To assist in policy that frequently references the same variable, the WITH
expression allows the use of a local variable within an expression. This feature helps the user to write
policies which are more efficient and simpler than they might otherwise be.
RiverWare Technical Documentation: RPL Language Structure
Revised: 7/17/18

	Search All
	Search This Document
	Main Menu
	¯¯¯¯¯¯¯¯¯¯
	RPL Language Structure
	1. Introduction
	2. Requirements for the Riverware Policy Language (RPL)
	3. Imperative versus Functional Programming
	3.1 Imperative Programming Paradigm
	3.2 Referential Transparency
	3.3 Functional Programming Paradigm
	3.4 Examples

	4. RiverWare Policy Language: A Hybrid Approach

	Main Menu
	Search This Document
	Search All

