
Technical Documentation Version 7.3
The
may
mec
righ

The
this
or p
RPL Data Types and
Palette
se documents are copyrighted by the Regents of the University of Colorado. No part of this document
 be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic,
hanical, recording or otherwise without the prior written consent of The University of Colorado. All
ts are reserved by The University of Colorado.

 University of Colorado makes no warranty of any kind with respect to the completeness or accuracy of
 document. The University of Colorado may make improvements and/or changes in the product(s) and/
rograms described within this document at any time and without notice.

RPL Data Types and Palette
Table of Contents
Expression Data Types ...1

NUMERIC .. 2
BOOLEAN ... 3
DATETIME ... 3

Fully or Partially Specified .. 4
Formats... 4
Examples .. 5
Datetime Math .. 7

STRING ... 8
OBJECT .. 8
SLOT ... 9
LIST ... 10

The RPL Palette ...11

Mathematical Operation Buttons: .. 13
Logical Operation Buttons: ... 14

Setting Tolerance for use in the logical comparison operators 15
Object and Slot Lookup and Assignment Buttons: .. 17
Unary Operation Buttons: ... 19
Values .. 19

Buttons for Common Values... 19
Buttons for Setting Flags on Slots ... 20

Conditional and Iterative Operations Buttons: .. 21
List Operation Buttons: ... 24
Miscellaneous Buttons: ... 27
Units in RPL .. 28

 Unit operators.. 28
Slot Value Units.. 28
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

RPL Data Types and Palette
RPL Data Types and PaletteRPLTypesPalette.pdf

This document describes and presents examples of each of the Data Types used in RPL. Then the RPL
palette buttons are described.

1. Expression Data Types

The RiverWare Policy Language language is composed of seven data types, such as numeric values,
datetimes, text strings, and slots. The data types are the building blocks of RPL. They are the only types
of data which expressions and functions are allowed to evaluate to and are the structure controlling
what information can be entered in different parts of the RPL. The structure editor uses expression data
types to enforce block and function validity as they are constructed. Attempting to enter an expression
of one type where another type is expected, immediately results in an error.
Unspecified expressions are pieces of the RPL which have not yet been defined when creating a RPL
set. Unspecified expressions are shown in the Rule Editor and Function Editor as the name of the
expression type, colored blue, and surrounded by small angle braces (< and >). An unspecified
expression may be filled in directly with the appropriate data, or it may be replaced with a function
which will evaluate to the appropriate data type. In most cases, unspecified expressions can be
completed by using Palette functions. This is the recommended approach. The complexity and
syntactical requirements of some expression types, particularly object and slot, behooves you to use the
built-in tools for formatting a correct expression.

Example: A rule contains an unspecified numeric expression:
<numeric expr>

The expression may be filled in with an actual value and units by typing:
100.0 cfs

or it could be replaced by an arithmetic function which evaluates to a value and units by clicking
on the N + N palette button:

<numeric expr> + <numeric expr>
or it could be replaced by yet another function which returns a value and units, such as a series
slot lookup:

Lake Mead.Outflow []
In all of these cases, the original requirement that the expression evaluate to a number and units is
satisfied.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

2

Expression Data Types
NUMERIC

2

The expression data types are listed below. More complete descriptions follow:

1.1 NUMERIC

The numeric expression data type is comprised of a number and its units. Numeric expressions may be
typed directly into a block or function by double-clicking the unspecified <numeric expr> and typing a
value and units into the textfield. As in Simulation, numbers are stored and evaluated internally with
twelve significant figures of precision. When a numeric expression is typed directly into a block or
function, the default display precision is eight digits beyond the decimal point. The precision of
displayed numbers can be modified by scrolling the Precision: spinner in the special options portion of
the RPL Set Editor.
Units for numeric expressions must follow the value, separated by a single space. If no units are
specified, the value is considered to be of a dimensionless unit type with units of “NONE.” When a
numeric expression is typed directly into a block or function, the units may be entered without quotes if
the unit name contains no special punctuation characters such as hyphens or forward slashes. When
quotes are omitted, they will be filled in automatically.

Expression Type
Unspecified

Representation Description Examples

NUMERIC <numeric expr> A number and its
units.

150 cfs
349.47926 “acre-feet/day”
1 NONE

BOOLEAN <boolean expr> True or False. TRUE
FALSE

DATETIME <datetime expr> An actual or sym-
bolic date.

@“t”, @“t-1”
@“Current Timestep”
@“Previous Timestep”
@“January 4, Current Year”

STRING <string expr> Quoted text and/or
numbers.

“Entering spring runoff season.”
“Minimum flow violated by 5%“

OBJECT <object expr> An object in the cur-
rent model.

%“Havasu”
%“Kentucky-Barkley Canal”
%“SJBelowNavajo::ColoradoAg”

SLOT <slot expr>
A slot on an object
in the current
model.

$“Lake Mead.Outflow”
$“Kentucky.Pool Elevation”
$“Rio Chama.Hydrologic Inflow”

LIST <list expr> A list of any mix of
data types.

{ 1561 [“ft”], 1573 [“ft”], 1589 [“ft”] }
{ @“April 15, 1999” }
{ %“Powell”, 10 [“cfs”], TRUE }
{ { %“Mead”, TRUE }, { $“Inflow” } }
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

3

Expression Data Types
BOOLEAN

3

Example: Typing in numeric expressions with the display precision set to the default of 8, causes the
following text to be shown in the editor.

1.2 BOOLEAN

The boolean expression data type can be either true or false. The expressions may be entered directly in
the editor by double-clicking the unspecified <boolean expr>, and typing into the textfield. The editor
accepts lowercase, uppercase and capitalized spellings, but automatically converts these entries into an
uppercase format.

Example: Typing in boolean expressions (as shown below) cause the following text to be shown in
the editor.

1.3 DATETIME

The datetime expression type is used to represent moments in time. Datetimes may be entered directly
by double-clicking an unspecified <datetime expr>, and typing into the resulting textfield. All datetime
expressions begin with an @ symbol and are followed by the datetime specification in double quotes (“
and ”).
Datetime expressions may be specified symbolically. Symbolic representations of points in time are
common in everyday language, but rare in programming languages. Symbolic representations include
such datetimes as “next week,” “20th day of month,” and “April, next year.” These types of datetime
specifications are allowed in the RiverWare Policy Language. They facilitate the writing of RPL
expressions by using date conventions to which you are more accustomed. They are evaluated by the

Exact Text Typed Into Textfield Resulting Display

150 cfs 150.00000000 “cfs”

0.000000004 “feet/day” 0.00000000 “feet/day”

0.5 NONE 0.50000000

248650 acre-feet
“parse error” due to hyphen,
therefore you must type the
quotes

Exact Text Typed Into Textfield Resulting Display

true TRUE

False FALSE

FALSE FALSE

tRuE “parse error”
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

4

Expression Data Types
DATETIME

4

RPL language, in the context in which they are used, to determine an exact moment in time. Slot access
is still performed internally with exact datetime specification in number of seconds since New Year’s,
1700 C.E.

1.3.1 Fully or Partially Specified

Datetime expressions fall into two categories and each may be used in specific instances or contexts:
• Fully specified: Fully specified datetimes are those which can be mapped directly to an instant in

time, such as @“t” or @“June 4, 1986.” Fully specified datetimes are required for all slot lookups,
slot assignments and predefined function arguments.

• Partially specified: Partially specified datetimes are those which cannot be mapped to a specific
instant in time, such as @“Current Month” or @“Tuesday.” Partially specified datetimes are used in
boolean comparisons. For example, a check for whether the current timestep is a Tuesday could be
done with a fully specified datetime, @“t”, and a partially specified datetime, @“Tuesday”:

IF (@“t” == @“Tuesday”) THEN ...

If you have a partially specified datetime that you want to convert into a fully specified datetime, use
the CompletePartialDate predefined function, HERE (RPLPredefinedFunctions.pdf, Section 19).

1.3.2 Formats

There are four general datetime formats. Within each format, there are specific components which the
user can specify. The four formats and the components which you can specify separately are shown in
the following table.

Name

Time components
(from lowest to

highest resolution)

Components you
can specify
separately Examples

1. Month, day, year Year, Month, Day of Month, Hour, Minute,
Second

@“August 23, 1997 4:00:00”
@“7/22/1997 4:0000”

Month @“August”, @“Month 8”, @“Current Month”
Day of Month @“DayOfMonth 23”, @“Previous DayOfMonth”

Year @“Year 1997”, @“Current Year” , @“... Year”
Time @“4:12:00”

2. Timestep Timesteps since the beginning of run @“Timestep 12”, @“t+2”
Timestep @“Max Timestep”, @“t-1”

3. Day, week, year Year, Week of Year, Day of Week, Hour,
Minute, Second

@“Monday Week 10, 1997 4:00:00”
@“DayOfWeek 5 Week 12, 1998, 12:00:00”

Day of Week @“Monday”, @“DayOfWeek 7”, @“Next DayOfWeek”
Day of Week and

Time
@“Monday 4:12”, @“4:12 DayOfWeek 1”,
@“4:12 Finish DayOfWeek”

4. Day, year Year, Day of Year, Hour, Minute, Second @“DayOfYear 227, 1997 4:00:00”
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

5

Expression Data Types
DATETIME

5

Thus, for the first format, you can specify almost any component. For the second format, you can only
specify the timestep and nothing else. So you cannot specify @“Timestep 12, Year 1997”; an error
would return.
As you specify components, you only specify as much as is needed to uniquely reference the date. So, if
in a boolean comparison you are comparing a date to see it is in 1997, you would enter (date ==
@“Year 1997”). But, if you want to compare if it is March of 1997, you enter @“March 1997” but do
not include the word “Year” before 1997.
The list of symbolic specifiers include the following: Min, Max, Start, Finish, Previous, Current, and
Next. Any of these specifiers can be used in the examples above.
If no time (hours, minutes, seconds) is specified at all, it defaults to 24:00:00. If a time is specified, it
may appear either before or after the specification of the Month, Day, and Year. Times may be specified
with or without seconds, if they are not specified then they default to 0 (e.g., both 17:23 and 17:23:00
refer to the same time of day).

1.3.3 Examples

Mixing of symbolic datetime elements results in an almost infinite number of datetime specifications.
Examples for some of these acceptable fully specified expressions and their interpretations are provided
below. The symbolic datetime elements shown can be combined into other forms not explicitly
enumerated.

Day of Year @“DayOfYear 23”, @“Start DayOfYear”
Day of Year and

Time
@“DayOfYear 23 4:12”,
@“4:12 Current DayOfYear”

Fully Specified Datetime Expression Interpretation

@“4/01/1996 14:00:00” April 1, 1996, 2 p.m.

@“April 1, 1996 14:00” April 1, 1996, 2 p.m.

@“April 1, 1996 14:00:00” April 1, 1996, 2 p.m.

@“t” or @“Current Timestep” the current timestep

@“t-1” or @“Previous Timestep” the previous timestep

@“t+1” or @“Next Timestep” the next timestep

@“Start Timestep” the begin timestep in the run or the begin timestep in an
expression slot (in the evaluation range).

@“Finish Timestep” the finish timestep in the run or the last timestep in an
expression slot (in the evaluation range).

@“April 1, Current Year 14:00:00” April 1 of the current year, 2 p.m.

Name

Time components
(from lowest to

highest resolution)

Components you
can specify
separately Examples
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

6

Expression Data Types
DATETIME

6

Partially specified datetime expressions include:

The previous examples do not capture all the possible combinations of partially specified datetime
expressions.

@“April 1, 1996 Current Hour:00:00” April 1, 1996 at the hour of the current timestep.

@“April Next DayOfMonth, 1996
Previous Hour:00:00”

Depends on the current timestep

@“7/22/1997 1:34:00 + 2 Days” the date/time which is 48 hours after the given date
(i.e., 7/24/97 1:34:00)

@“+ 25” the date/time 25 timesteps beyond the current timestep

@“Next Timestep - 1” Confusing way to refer to current timestep

@“2 hours before Current Time-
step”

2 hours before current timestep

Partially Specified Datetime
Expression Interpretation

@“Year 1997” the year specified as 1997

@“Previous Year” the year before the current year

@“Current Year” the year specified as the year of the current timestep

@“Month 4” the month specified as April

@“April” the month specified as April

@“April 22” the 22nd day in April

@“6:00 April 22” 6:00 AM on April 22

@“April 22 6:00” 6:00 AM on April 22

@“6:00” 6:00 AM

@“DayOfMonth 4” the day of the month specified as the 4th

@“Next DayOfMonth” the day of the month specified as the day after the day of the current timestep

@“Max DayOfMonth” the day of the month that is the last day in the month

@“Monday” the day of week specified as Monday

@“WeekOfYear 2” the week of year specified as the second

@“DayOfWeek 2” the day of week specified as Monday

@“6:00 Previous DayOfWeek” 6:00 AM on the previous day of the week

@“DayOfYear 157” the day of year specified as 157

@“Max DayOfYear” the day corresponding to the last day of the year
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

7

Expression Data Types
DATETIME

7

1.3.4 Datetime Math

When performing addition or subtraction math on datetime values (for example, adding 3 timesteps to
the current timestep), there are three approaches that can be used:

A. Math within a datetime specification: Within a datetime literal, it is possible to add or subtract inte-
gral values from a base time. Thus, possible specifications for a datetime value three timesteps beyond
the current timestep include:

@“t + 3” or
@“t + 3 timestep” or
@“t + 3 day” or
@“t + 72 hour”
Note that the date time math occurs within the quoted literal expression, which can not include references
to variables, that the integral increment is assumed to have units of “timestep” when the units are
unspecified, and that the latter two specifications are less general because they assume that the model has
a daily timestep.
This approach to datetime math is probably the easiest to read, but is of course only useful when literal
specification is possible. For example, when one would like to increment a base datetime by a number
of timesteps which is itself the result of expression evaluation, then one of the alternative approaches to
datetime math is required.

B. Mathematical expressions involving a datetime operand: A numeric value can be added to or sub-
tracted from a datetime value. Continuing the example from above, the following expressions would
evaluate to three timesteps beyond the current timestep in a daily model:

@“t” + 72 “hour” or
@“t” + 3 “day”
Here are the math operations supported for datetime values:
<DATETIME> + <NUMERIC> results in a <DATETIME>
<NUMERIC> + <DATETIME> results in a <DATETIME>
<DATETIME> - <NUMERIC> results in a <DATETIME>
<DATETIME> - <DATETIME> results in a <NUMERIC> (with units of time).
In such expressions, the numeric value must have units of type Time. Note that “Timestep” is not a
legal unit of Time, so this type of approach could not be used when one would like to add some number
of timesteps in a model whose timestep increment is not fixed (i.e., monthly or annual timestep
models).
The following operations are not supported as the result is undefined:
<NUMERIC> - <DATETIME>, <DATETIME> + <DATETIME>
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

8

Expression Data Types
STRING

8

Note: Within RPL evaluation, 1 “Month” is equal to 31 days and 1 “Year” is equal to 365
days as defined in the rplUnits file in the installation directory. If you are trying to compute a
flow by dividing a volume by 1 “month”, it will use 31 days for the month. If you then set
that value on a monthly slot that only has 30 days, the values will be not be the same due to
the conversion. Instead, convert the volume to a flow using VolumeToFlow and specify the
month or divide by GetDaysInMonth and specify the desired month. For non constant
timestep lengths, the best approach is to stay in volumes as long as possible, and then
convert to a flow when ready to set the value on a flow type slot.

C. Using the OffsetDate function: The OffsetDate predefined function, HERE (RPLPredefinedFunc-

tions.pdf, Section 142), allows you to specify the increment and length of timestep to use for the addition or
subtraction. Thus, you could enter:

OffsetDate(@ “t”, 1, “1 Day”)
This function is most useful for variable length timesteps (monthly, annual).

1.4 STRING

The string expression data type is any text surrounded by double quotes (“ and “). An unspecified string
expression may be entered directly in expression by double-clicking the <string expr>, and typing in
the string surrounded by double quotes. String expressions may contain any combination of letters,
numbers and punctuation except double quotes.

1.5 OBJECT

The object expression data type is used to reference objects in the currently loaded model. An
unspecified object expression may be completed by double-clicking the <object expr> and typing in
the object name in double quotes and preceded by a percent symbol. When an object expression is
typed directly into a block or function, the object name may be entered without quotes if the object
name contains no spaces or special punctuation characters. When quotes are omitted, they will be filled
in automatically.
It is highly recommended that you do not type object names directly into blocks and functions. The
potential for error is great. An extra space or an incorrectly capitalized letter will invalidate the object
expression. There is, however, a convenient and foolproof way to enter this data. Most commonly, an
unspecified object expression is completed by using the Object Selector in the RPL Palette or by
typing in a variable name whose type is an object expression.
Examples of object expressions typed directly into the Editor include:

Exact Text Typed Into Textfield Resulting Display

%“Lake Mead” Lake Mead
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

9

Expression Data Types
SLOT

9

In contexts where an object expression is used as part of a complete slot specification, the object
expression must be followed by a <string expression> indicating the slot.

Example: The Pool Elevation of lake Powell could be filled into:
<object expr>.<string expr>

and result in the expression below:
Lake Powell.”Pool Elevation”

Note: For Expression Slots and Object Level Account
Methods, you can use the keyword ThisObject to access the
containing object. For example, to get the slot named
DailyTotals from this data object, you could create the expression shown in the image.

1.6 SLOT

The slot expression data type is used to specify a specific slot on an object of the currently-loaded
model. The expression must include the object on which the slot resides as well as the slot name itself.
An unspecified slot expression may be completed by double-clicking the <slot expr>, typing in the
object name, a dot, and the slot name, all in double quotes and preceded by a dollar symbol. When a
slot expression is typed directly into a block or function, the object.slot name may be entered without
quotes if neither of the names contain spaces or special punctuation characters. Regardless of how a slot
expression is entered, the dollar sign and quotes are automatically omitted in the resulting display.
Again, it is highly recommended that you do not type object.slot names directly into blocks and
functions. The same convenient and foolproof way to enter object data is available to enter object.slot
data. An unspecified slot expression may be completed by using the Slot Selector in the RPL Palette
or by typing in a variable name whose type is a slot expression. The Slot Selector is an interface
similar to the one used elsewhere in RiverWare, which formats a selected object and slot correctly and
inserts it into the slot expression.
Examples of slot expressions typed directly into the editor include:

% DataObj DataObj

% Havasu Diversion “parse error” due to space

Exact Text Typed Into Textfield Resulting Display

$“Lake Mead.Outflow” Lake Mead.Outflow

$ DataObj.target DataObj.target

$ Havasu Diversion.Inflow “parse error” due to space

$ “Havasu Diversion”.Inflow “parse error”
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

10

Expression Data Types
LIST

10
1.7 LIST

List expressions are ordered collections of other expression data types. Lists can contain zero or more
elements. Elements may be of different types, and lists may even contain other lists. An unspecified list
expression may be completed by double-clicking the <list expr> and typing in a comma-separated list
of other expressions enclosed in curly braces ({ and }). As with object and slot expressions, it is highly
recommended that you do not type list expressions directly into the Editor. The Palette contains a
multitude of functions for creating and retrieving information from lists. Examples of valid lists
expressions, before the expression language expands their elements, include:

{ 1561 [“ft”], 1573 [“ft”], 1589 [“ft”], 3800.05 [cfs] }
{ @“April 15, 1999” }
{ }
{ %“Powell”, 10 [“cfs”], True }
{ { %“Mead”, “Max Outflow”, TRUE }, { $“Inflow” }, False }

When an element of a list is read, its expression type must match the type expected by the reading
function. If a function finds an object where a datetime is expected, the run is halted and an error is
posted. The flexibility of lists is an advantage as long as the types of their contents are known, and they
are used properly within blocks and functions. Because of their flexibility, however, the types of their
elements cannot always be determined prior to a model run. For this reason, list type-checking is only
done during execution, and errors in configuration are not caught until a run is in progress.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

11

The RPL Palette
LIST

11
2. The RPL Palette

The RPL Palette is the dialog from
which the operators and functions
are selected to build a block or user
function. Using the Palette avoids
having to type most expressions
directly into the Editor, thus
limiting the potential for errors.
The Palette consist of three tabs,
one for the buttons, one tab for
User-Defined Functions and one
tab for the Predefined Functions,
described as follows:

Palette Buttons: On the Palette
Buttons tab, each of the buttons
represents an operation. The
buttons use the following
abbreviations:
• B: BOOLEAN
• D: DATETIME
• E: Expression; can be more than

one type
• L: LIST
• N: NUMERIC
• Obj: OBJECT
• Slot: SLOT
These buttons represent operations
which evaluate to one of the
expression data types mentioned
above. Buttons on the RPL Palette are enabled and disabled dynamically. When an expression is
highlighted in the Editor, the Palette buttons that satisfy the expected data type are enabled. All the
buttons and the operations to which they are associated are described below, starting HERE (Section 2.1).
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

12

The RPL Palette
LIST

12
User Defined Functions: The User Defined
Functions tab shows available functions in the RPL
set or any opened Global Function sets. Functions are
selected by double clicking on the function name to
replace the selected expression with the function.
There is a toggle to show only functions which have
the return type of the selected RPL expression:

In addition, there is a toggle to retain the function
arguments, when possible, when replacing an existing
function.

When checked, the newly selected function will retain
arguments from left to right as long as the types
match. If an argument’s type does not match, or if
there are not enough existing arguments, the
remaining arguments in the new function will remain
as empty expressions.
Use the Function Show Description menu to
show the selected function’s Description as specified
on the function’s RPL editor.

Predefined Functions: This tab shows the list of
predefined functions available in RiverWare. These
functions are further described HERE

(RPLUserInterface.pdf, Section 2.6). Shown are sortable
columns for the Return Type, Name, and the list of
Arguments for each function.
There is a toggle to show only functions which have
the return type of the selected RPL expression:

When the check box is off, all predefined functions are
shown even if no expression is selected.
This tab also has a toggle to retain function arguments.
as possible, when replacing an existing function. The
behavior is the same as described above for the user-
defined function tab.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

13

The RPL Palette
Mathematical Operation Buttons:

13
Use the Function Show Description menu to show the documentation for the selected function.
This shows the same documentation as presented HERE (RPLPredefinedFunctions.pdf, Section 1).

Note: Note, references are shown as blue but do not hyperlink elsewhere.

Included is a description, return type, list of the arguments and what they mean, description of evaluation,
comments, syntax example and return example.

2.1 Mathematical Operation Buttons:

Button Evaluates to: Unspecified Form and Description

E + E
NUMERIC
or
DATETIME

<expr> + <expr>
Addition of two expressions. The two arguments can be numeric or fully
specified datetime expressions. If numeric expressions are used, they must
be of the same unit type. For more information on the use of this operation
with datetimes, click HERE (Section B)

E - E
NUMERIC
or
DATETIME

<expr> - <expr>
Subtraction of two expressions. The two arguments can be numeric or
fully specified datetime expressions. If numeric expressions are used, they
must be of the same unit type. For more information on the use of this
operation with datetimes, click HERE (Section B)

N * N NUMERIC <numeric expr> x <numeric expr>
Multiplication of two numeric expressions.

N / N NUMERIC <numeric expr> / <numeric expr>
Division of two numeric expressions.

N ^ N NUMERIC

<numeric expr> ^ <numeric expr>
Exponentiation of one numeric expression (the base) to a power of another
numeric expression (the exponent). The exponent is truncated to an inte-
ger. The units of the base are raised to the power of the exponent.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

14

The RPL Palette
Logical Operation Buttons:

14
2.2 Logical Operation Buttons:

Button Evaluates to: Unspecified Form and Description

IsNaN N BOOLEAN

IsNaN <numeric expr>
Logical validity check for numeric data types. The result is TRUE if the
numeric expression evaluates to a NaN, i.e. Not a Number. The result is
FALSE if the numeric expression has a value.

B AND B BOOLEAN

<boolean expr> AND <boolean expr>
Logical AND comparison of two expressions. The result is TRUE if both
expressions are TRUE. The result is FALSE if one expression is TRUE
and the other is FALSE. Note, if the first expression is FALSE, the entire
AND is FALSE and the second expression is not evaluated.

B OR B BOOLEAN
<boolean expr> OR <boolean expr>
Logical OR comparison of two expressions. The result is TRUE if either
expression is TRUE. Otherwise it is FALSE.

E > E BOOLEAN

<expr> > <expr>
Greater than comparison. The result is TRUE if the first expression is
strictly greater than the second expression. Otherwise it is FALSE. The
two arguments can be numeric expressions of the same unit type or date-
time expressions (fully or partially specified). Numeric expressions are
automatically converted to common units before comparison. A datetime
expression is considered greater if it is later in time.
See below for more information on tolerance during the comparison.

E >= E BOOLEAN

<expr> >= <expr>
Greater than or equal comparison. The result is TRUE if the first expres-
sion is greater than or equal to the second expression. Otherwise it is
FALSE. The two arguments can be numeric expressions of the same unit
type or datetime expressions (fully or partially specified). Numeric
expressions are automatically converted to common units before compari-
son. A datetime expression is considered greater if it is later in time.
See below for more information on tolerance during the comparison.

E < E BOOLEAN

<expr> < <expr>
Less than comparison. The result is TRUE if the first expression is strictly
less than the second expression. Otherwise it is FALSE. The two argu-
ments can be numeric expressions of the same unit type or datetime
expressions (fully or partially specified) Numeric expressions are auto-
matically converted to common units before comparison. A datetime
expression is considered less than if it is earlier in time.
See below for more information on tolerance during the comparison.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

15

The RPL Palette
Logical Operation Buttons:

15
2.2.1 Setting Tolerance for use in the logical comparison operators

In the above operators, a
comparison is made between
two values. If the values are
numeric, there is the possibility
that due to unit conversion or
other internal numerical
computation, RiverWare could
try to compare two numbers
that are, in all practical
purposes the same, yet are

E <= E BOOLEAN

<expr> <= <expr>
Less than or equal to comparison. The result is TRUE if the first expres-
sion is less than or equal to the second expression. Otherwise it is FALSE.
The two arguments can be numeric expressions of the same unit type or
datetime expressions (fully or partially specified). Numeric expressions
are automatically converted to common units before comparison. A date-
time expression is considered less than if it is earlier in time.
See below for more information on tolerance during the comparison.

E == E BOOLEAN

<expr> == <expr>
Equality comparison. The result is TRUE if the first expression is exactly
equal to the second expression. Otherwise it is FALSE. The two argu-
ments can be numeric expressions of the same unit type, fully or partially
specified datetime expressions, object expressions, slot expressions, bool-
ean expressions, string expressions, or list expressions. Numeric expres-
sions are automatically converted to common units before comparison. A
fully specified datetime expression can be compared to a partially speci-
fied datetime expression; in this case, only the largest time unit is com-
pared.
See below for more information on tolerance during the comparison.

E != E BOOLEAN

<expr> != <expr>
Inequality comparison. The result is TRUE if the first expression is not
equal to the second expression. Otherwise it is FALSE. The two argu-
ments can be numeric expressions of the same unit type, fully or partially
specified datetime expressions, object expressions, slot expressions, bool-
ean expressions, string expressions, and list expressions. Numeric expres-
sions are automatically converted to common units before comparison.
Datetime expressions are considered greater as they are later in time. A
fully specified datetime expression can be compared to a partially speci-
fied datetime expression; in this case, only the largest time unit is com-
pared.
See below for more information on tolerance during the comparison.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

16

The RPL Palette
Logical Operation Buttons:

16
different in the comparison. For example, a RPL expression says (0.0 “cfs” == Flow[]) and the Flow
evaluates to 1X10-13 cfs due to the addition of two double precision values. In this example, the
statement will return FALSE but probably should return TRUE. To avoid this situation, the user is able
to define a tolerance value. From the main RiverWare workspace, select Policy RPL Parameters...
to open the dialog shown.
Click on the Numeric Comparison Tolerance toggle. The box becomes active with a default value of
zero. Enter a new value in the box to specify the tolerance. The tolerance represents an absolute value
in standard units. Thus, in the example above, if the tolerance is 0.001, it represents that
Abs(0.0 “cfs” - Flow[]) <= 0.001 cms for the comparison to return TRUE. In other words, if two values
are within the comparison tolerance of one another, then they are considered equal for the purposes of
RPL comparison operations.
The following table provides details about how the comparison tolerance is applied for each of the RPL
comparison operators.

The RPL Numeric Comparison Tolerance parameter is saved with the model file and is applied to all
RPL sets used by the model including Rulesets, User Defined Accounting Method sets, Optimization
Goalsets, Initialization Rules, Iterative MRM sets, Expression Slot sets and Global Functions sets.

Operator
Application of

Tolerance
RPL Example

(Tolerance = 0.01)
Comparison With Tolerance

Applied Result

E == E |A - B| <= Tolerance
5.00 cms == 5.00 cms |5.00 cms - 5.00 cms| <= 0.01 cms TRUE

5.00 cms == 4.99 cms |5.00 cms - 4.99 cms| <= 0.01 cms TRUE

4.98 cms == 5.00 cms |4.98 cms - 5.00 cms| <= 0.01 cms FALSE

E != E |A - B| > Tolerance
5.00 cms != 5.00 cms |5.00 cms - 5.00 cms| > 0.01 cms FALSE

5.00 cms != 4.99 cms |5.00 cms - 4.99 cms| > 0.01 cms FALSE

4.98 cms != 5.00 cms |4.98 cms - 5.00 cms| > 0.01 cms TRUE

E > E A > B + Tolerance
5.02 cms > 5.00 cms 5.02 cms > 5.01 cms TRUE

5.01 cms > 5.00 cms 5.01 cms > 5.01 cms FALSE

5.00 cms > 5.00 cms 5.00 cms > 5.01 cms FALSE

E >= E A + Tolerance >= B
5.01 cms >= 5.00 cms 5.02 cms >= 5.00 cms TRUE

4.99 cms >= 5.00 cms 5.00 cms >= 5.00 cms TRUE

4.98 cms >= 5.00 cms 4.99 cms >= 5.00 cms FALSE

E < E A + Tolerance < B
4.98 cms < 5.00 cms 4.99 cms < 5.00 cms TRUE

4.99 cms < 5.00 cms 5.00 cms < 5.00 cms FALSE

5.00 cms < 5.00 cms 5.01 cms < 5.00 cms FALSE

E <= E A <= B + Tolerance
4.99 cms <= 5.00 cms 4.99 cms <= 5.01 cms TRUE

5.00 cms < = 4.99 cms 5.00 cms <= 5.00 cms TRUE

5.00 cms <= 4.98 cms 5.00 cms <= 4.99 cms FALSE
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

17

The RPL Palette
Object and Slot Lookup and Assignment Buttons:

17
2.3 Object and Slot Lookup and Assignment Buttons:

Button Evaluates to: Unspecified Form and Description

Slot [E] NUMERIC

<expr> [<expr>]
Series slot value at a particular timestep or slot value at a particular row.
The first unspecified <expr> must be completed by an expression which
evaluates to a specific slot on an object. The second <expr> must be a
fully specified datetime which lies on an increment of the model run time-
step or a row on the slot.

Slot [E, E] NUMERIC

<expr> [<expr>, <expr>]
Table slot value in a particular row and column. The first unspecified
<expr> must be completed by an expression which evaluates to a specific
table slot on an object. The two comma-separated <expr> are the row and
column of the table slot, respectively. The row and column may each be
specified as a zero-based numeric value with units of [NONE] or a string
expression which matches the column or row label.
OR
Agg series slot or periodic slot value for a particular date and a particular
column. The first unspecified <expr> must be completed by an expression
that evaluates to a specific slot on an object. The two comma-separated
<expr> are the date and column of the slot, respectively. The column may
be specified as a zero-based numeric value with units of [NONE] or a
string expression which matches the column label. Click HERE
(Slots.pdf, Section 4.12.3) for more info.

Slot [] NUMERIC

<expr> []
Series slot value at the current timestep or scalar slot value. The unspeci-
fied <expr> must be completed by an expression which evaluates to a spe-
cific slot on an object.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

18

The RPL Palette
Object and Slot Lookup and Assignment Buttons:

18
NaNToZero N NUMERIC

NaNToZero <expr>
This operator has a single numeric sub expression; if that sub expression is
a lookup of an invalid value (NaN), then NaNToZero evaluates to 0.0 in
the units of the lookup slot, otherwise it simply returns the value
unchanged. This operator provides a simple and efficient way to treat a
missing slot value as zero, a common requirement of water accounting
policy.

To illustrate, the following expression
 NaNToZero "Res A.Outflow" []

is equivalent to
 IF (IsNaN "Res A.Outflow" [])

 0.0 [<Res A.Outflow’s units>]

 ELSE

 "Res A.Outflow" []

 END IF

Note that, unlike the IsNaN operator, this operator is only useful when the
sub-expression is an object/slot lookup expression; if any other type of
numeric sub expression encounters a NaN during evaluation, then evalua-
tion of the entire containing expression will halt as usual. For example, if
we assume that "Res A.Outflow" has units of cms but has no valid values,
then the expression
 NaNToZero ("Res A.Outflow" []) + 0.0 [cms]
would evaluate to 0.0 [cms], but the expression
 NaNToZero ("Res A.Outflow" [] + 0.0 [cms])
would not evaluate successfully; it would terminate when the invalid
value on Res A was encountered.

Obj . Slot SLOT

<object expr> . <string expr>
Object and slot expression. This expression can be used to specify the
object and slot required by the three slot lookup/assignment expressions
above. The object expression must be an object in the model and the string
expression must be the name of a slot, exactly as it appears on the object.

Obj ^ Slot SLOT

<object expr> ^ <string expr>
Object and accounting slot expression. This expression can be used to
specify the object and slot required by the three slot lookup/assignment
expressions above. The object expression must be an object in the model
and the string expression must be the full name of an accounting slot, in
the form: account name.slot name.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

19

The RPL Palette
Unary Operation Buttons:

19
2.4 Unary Operation Buttons:

2.5 Values

The Values section is used to access common values and set flags on slots.

2.5.1 Buttons for Common Values

The common values buttons are used to access values that have
traditionally been typed by the user. These include common
DATETIME values and list expressions.
• @“t” - Current Timestep
• @“t-1” - Previous Timestep
• @“t+1” - Next Timestep
• @“Start Timestep” - First timestep in the run
• @“Start Timestep - 1” - Initial timestep
• @“Finish Timestep” - Final Timestep in the run period
• { } - Empty list expression
A similar list of common values can be found by right clicking on an
expression and choosing the Common Values menu.

Object Selector OBJECT
Invokes the object selector dialog
Object selector. This button invokes the object selector found elsewhere in
RiverWare to choose a single object in the model.

Slot Selector SLOT

Invokes the slot selector dialog
Object and slot or Object and accounting slot selector. This button invokes
the slot selector found elsewhere in RiverWare to choose a single object
and slot in the model.

Button Evaluates to: Unspecified Form and Description

- N NUMERIC

- <numeric expr>
Reverse the sign of a numeric expression. Magnitude and units are main-
tained, but a positive value becomes negative and a negative value
becomes positive.

NOT B BOOLEAN
NOT <boolean expr>
Reverse the value of a boolean expression. TRUE becomes FALSE and
FALSE becomes TRUE.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

20

The RPL Palette
Values

20
2.5.2 Buttons for Setting Flags on Slots

The following RPL operations can only be used to directly set a slot value.
They cannot be passed to functions or referenced in block or function logic.
They cannot replace any unspecified NUMERIC expression; they can only
be used to set a slot.

Menu Button Description Notes

Drift Used to set the DRIFT (D) flag on the Regulated
Spill or Bypass slots on reservoir objects

The behavior of these operators is identical
to the user setting the particular flag
through the user interface. The only excep-
tion in this case is that the slot can be over-
written by a higher priority rule. When
these operators are used, the slot will have
both the R flag and the flag associated with
the palette button selected. When the object
dispatches, the slot will receive the appro-
priate value. The presence of the these
flags will cause the slot to be considered as
a known value (for choosing a dispatch
method) even though it will not actually
have a value until after the object dis-
patches.

Maximum
Capacity

Used to set the MAX CAPACITY (M) flag on the
Outflow or Energy slots on reservoir objects.

Surcharge
Release

Used to set the SURCHARGE RELEASE (S) flag
on the Surcharge Release slot on reservoir objects.

Best Efficiency Used to set the BEST EFFICIENCY (B) flag on the
Energy slot on reservoir objects.

Regulation
Discharge

Used to set the REGULATION_DISCHARGE (G)
flag on the Reg Discharge Calculation slot on Con-
trol Point objects.

Unit Values

Used to set the UNIT_VALUES (U) flag on Tur-
bine Release or Energy slots on power reservoirs.
This flag is used (with the Unit Power Table
method) to specify that either Unit Turbine Release
or Unit Energy will be specified.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

21

The RPL Palette
Conditional and Iterative Operations Buttons:

21
2.6 Conditional and Iterative Operations Buttons:

Button
Evaluates

to: Unspecified Form and Description

IF ... any

IF (<boolean expr>) THEN
 <expr>
END IF
Adds a conditional expression with NO else clause. If the boolean expression evaluates
to TRUE, the expression on the second line is evaluated. Otherwise it is not, and the
entire conditional statement does not evaluate to a value.

IF ... ELSE ... any

IF (<boolean expr>) THEN
 <expr>
ELSE
 <expr>
END IF
Adds a conditional expression including an else clause. If the boolean expression evalu-
ates to TRUE, the expression on the second line is evaluated. If the boolean expression
evaluates to FALSE, the expression on the fourth line is evaluated. The entire condi-
tional statement evaluates to one of the two expressions.

ELSE ... any

IF (<boolean expr>) THEN
 <expr>
ELSE
 <expr>
END IF
Adds an Else branch to a conditional expression. It is generated by highlighting the
either the boolean condition <boolean expr> or consequence expression <expr> of an IF
expression or ELSE IF expression and clicking the ELSE ... button.
If the boolean expression evaluates to FALSE, the expression on the fourth line is evalu-
ated. The entire conditional evaluates to one of the two expressions.

ELSE IF ... any

IF (<boolean expr>) THEN
 <expr>
ELSE IF (<boolean expr>) THEN
 <expr>

ELSE IF (<boolean expr>) THEN
 <expr>
END IF
Adds an ELSE IF branch to a conditional expression. It is generated by highlighting the
boolean condition <boolean expr> or consequence <expr> of an IF or ELSE IF and
clicking the ELSE IF... button. The ELSE IF branch is added immediately after the
branch containing the selection.
In the example above, if the first boolean expression evaluates to FALSE, the boolean
expression on the third line is evaluated. If that boolean is true, the expression on the
fourth line is evaluated. You may add as many ELSE IF... branches as needed.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

22

The RPL Palette
Conditional and Iterative Operations Buttons:

22
FOR ... any

FOR (NUMERIC index IN <list expr>) WITH NUMERIC result =
<numeric expr> DO
 result = <numeric expr>
END FOR
Structure for looping over the items in a list. The looping variable, index, is set to the
value of the next item in the list expression each time through the loop. The value vari-
able, result, is initialized on the first line of the structure. Each time through the loop, the
expression on the second line is evaluated and its value is set on the result variable. The
previous value of the result variable may be used inside the expression on the second
line. The items in the list and the result may be of any expression type even though the
default structure uses the numeric type for the looping variable and the result. To change
the type of the looping variable, index, and/or the value variable, result, double-click on
the “NUMERIC” element and enter the new expression type. The names of the looping
and value variables may also be changed.
There is also a FOR statement used to loop over a list and execute multiple statements. It
is described HERE (RPLUserInterface.pdf, Section 2.3).

WITH ... any

WITH NUMERIC var = <numeric expr> DO
 <expr>
END WITH
Structure for defining a variable to be used multiple times within an expression. The
variable, var, is set on the first line of the structure. This variable can be used as many
times as desired within the expression(s) between the DO and END WITH. Because the
variable is not recalculated each time it is used, this structure can make a block more
efficient. The variable may be of any expression type even though the default structure
uses the numeric type. To change the type of the variable, var, double-click on the
“NUMERIC” element and enter the new expression type. The name of the variable may
also be changed.
There is also a WITH statement used to set a temporary variable outside of multiple
statements. It is described HERE (RPLUserInterface.pdf, Section 2.3).

Button
Evaluates

to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

23

The RPL Palette
Conditional and Iterative Operations Buttons:

23
WHILE ... any

WHILE (<boolean expr>) WITH NUMERIC result = <numeric expr>
DO
 result = <numeric expr>
END WHILE
Structure for looping as long as a condition is TRUE. The conditional boolean expres-
sion is evaluated prior to each loop. If the boolean expression is TRUE, the numeric
expression on the second line is evaluated. If the boolean expression is FALSE, the
structure stops looping and returns the value of the value variable. The value variable,
result, is initialized on the first line of the structure. Each time through the loop, the
expression on the second line is evaluated and its value is set on the result variable. The
previous value of the result variable may be used inside the expression on the second
line. The result may be of any expression type even though the default structure uses the
numeric type. To change the type of the value variable, result, double-click on the
“NUMERIC” element and enter the new expression type. The name of the value vari-
able may also be changed.
When a WHILE expression is executed, it counts the number of times the body is evalu-
ated, and fails with a message if the iteration count ever exceeds the value of the RPL
parameter. The default max iterations is 10,000, but may be modified as needed in the
RPL Parameters dialog. (From the main workspace, select Policy RPL Parame-
ters... to open the parameters).

Button
Evaluates

to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

24

The RPL Palette
List Operation Buttons:

24
2.7 List Operation Buttons:

SUM ... NUMERIC

FOR (NUMERIC index IN <list expr>) SUM

<numeric expr>
END FOR
Specialized FOR loop structure for looping over the items in a list and summing a vari-
able. For each item in the list, the looping variable, index, is set to the value of the next
item in the list expression. Next, the expression on the second line is evaluated and its
value is added to the result variable. The items in the list may be of any expression type
even though the default structure uses the numeric type for the looping variable and the
result. To change the type of the looping variable, index, double-click on the
“NUMERIC” element and enter the new expression type. The names of the looping
variables may also be changed.

AVE ... NUMERIC

FOR (NUMERIC index IN <list expr>) AVE

<numeric expr>
END FOR
Specialized FOR loop structure for looping over the items in a list and averaging their
values. For each item in the list, the looping variable, index, is set to the value of the
next item in the list expression. Next, the expression on the second line is evaluated and
its value is included in the total resulting average. The items in the list may be of any
expression type even though the default structure uses the numeric type for the looping
variable and the result. To change the type of the looping variable, index, double-click
on the “NUMERIC” element and enter the new expression type. The names of the loop-
ing variable may also be changed.

Button Evaluates to: Unspecified Form and Description

{ E } LIST
{ <expr> }
This button creates a list with a single item of an unspecified type.

E , E any

<expr>, <expr>
This button adds a new item of an unspecified type to an existing list. To
use it, highlight one item and click the button. The new item is added
immediately after the highlighted item in the list.

L - L LIST

<list expr> - <list expr>

The set difference expression takes two lists and returns a single list that
contains the items that are in the left hand list but not in the right hand list.
Duplicate items are removed.

Button
Evaluates

to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

25

The RPL Palette
List Operation Buttons:

25
L ^ L LIST

<list expr> ^ <list expr>
The set symmetric difference expression takes two lists and returns a sin-
gle list that contains the items that are not in both lists. This is equivalent
to the expression: (list1 U list2) - (list1 intersect list2). This is also equiva-
lent to the expression: (list1 - list2) U (list2 - list1). Duplicate items are
removed.

L UNION L LIST

<list expr> UNION <list expr>
The set union expression takes two lists and returns a single list that con-
tains the items that are in either list or both lists. Duplicate items are
removed.

INTERSECTION LIST
<list expr> INTERSECTION <list expr>

The set intersection expression takes two lists and returns a single list that
contains the items that are in both lists. Duplicate items are removed.

L<N> any

<list expr>< <numeric expr> >
Evaluates to the expression located at the given numeric index in the given
list. The index numeric expression is zero-based and has units of [NONE].
If the item at the given index in the list is not the expected type when the
expression is evaluated or if there is no item at the given index in the list,
the run aborts with an error.

INSERT LIST

INSERT <expr> INTO <list expr>
Insertion of a new item of unspecified type into the first location of an
existing list. If the list is initially empty, the new list contains only one
item. If the list initially contains items, all items are shifted down to allow
the new item to be inserted at the front of the list.

LENGTH L NUMERIC
LENGTH <list expr>
Determines the number of items in the list expression. The numeric value
has units of [NONE].

APPEND ... LIST

APPEND <expr> ONTO <list expr>
Append a new item of unspecified type onto the end of an existing list. If
the list is initially empty, the new list contains only one item. If the list ini-
tially contains items, the new item is appended as the last item of the list.

E IN L BOOLEAN

<expr> IN <list expr>

Tests for existence of the given expression as a member of the list expres-
sion. If the given expression is one of the items in the list, this function
evaluates to TRUE. If the expression does not match any of the items of
the list, the function is FALSE.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

26

The RPL Palette
List Operation Buttons:

26
D TO D LIST

<datetime expr> TO <datetime expr>
Creates a list of datetimes beginning with the first datetime expression and
ending on or before the second datetime expression. The datetime argu-
ments must be fully specified. The interval between datetime items of the
list is equal to the run timestep (or the slot’s timestep for an expression
slot). If the second datetime argument does not correspond to a model run
timestep, the last item of the list is the last model run timestep before the
argument.

REMOVE ... LIST

REMOVE ITEM @INDEX <numeric expr> FROM <list
expr>
Removes the item at a given index from an existing list. All of the items
which followed the removed item in the list are shifted up. If there is no
item at the given index when the expression is evaluated, the run aborts
with an error.

SUB ... LIST

SUB <expr> FOR ITEM @INDEX <numeric expr> FROM
<list expr>
Substitutes the item at a given index in an existing list with the given
expression. If there is no item at the given index when the expression is
evaluated, the run aborts with an error.

FIND ... NUMERIC
FIND <expr> WITHIN <list expr>
This is used to find the index of a given item in a list. If the item is not
contained in the list, -1 (negative one) is returned.

MAP LIST ... LIST

MAPLIST (NUMERIC index IN <list expr>) DO
 <expr>
END MAPLIST

This expression is used to take a list and perform some action to each ele-
ment in the list thereby resulting in a new, modified list. This expression
was developed primarily for performance reasons. Prior to the existence
of this function, the user would use a FOR loop to rotate through the ele-
ments of a list, modify them, and create a new list with the modified ele-
ments. With the MAP LIST expression, this is much more efficient and
more readable.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

27

The RPL Palette
Miscellaneous Buttons:

27
2.8 Miscellaneous Buttons:

Button Evaluates to: Unspecified Form and Description

E CONCAT E
LIST
or
STRING

<expr> CONCAT <expr>
Concatenates two expressions into one. If the two expressions are of type
LIST, the resulting expression is a single list containing all of the items of
the two original lists. The order of the items is preserved, with the first
list’s items before the second list’s items. If the two expressions are of any
other type, the resulting expression is a string made up by concatenating
the STRINGIFY’d second expression onto the end of the STRINGIFY’d
first expression. See the description of STRINGIFY below.

Note, it is not necessary to explicitly STRINGIFY an expression before
using it in a CONCAT expression. If the expression is not already a
STRING, it will be automatically converted. Thus,
1000 CONCAT “cfs”
is equivalent to
(STRINGIFY 1000) CONCAT “cfs”
but the first expression is cleaner and more efficient

(E) any

(<expr>)
Adds parenthesis around any expression. Parenthesis can make compli-
cated expressions more readable. Parenthesis may also be required to
remove ambiguity in the order of expression evaluation.

STRINGIFY E STRING

STRINGIFY <expr>
Converts any expression into a string. The STRING representations of
other expression types are:
 NUMERIC => “number [units]” or “number” if units are {NONE}
 DATETIME => “hours:minutes month day, year” or less, depending on
model run timestep
 BOOLEAN => “TRUE” or “FALSE”
 OBJECT => “object name”
 SLOT => “object name.slot name”
 LIST => “{ item, item, item ... }”

STOP_RUN E Aborts the Run

STOP_RUN <expr>
This operator takes any expression type as an argument. When it is evalu-
ated, it aborts the run with an error message which contains the argument
as part of the message. If executed from within an iterative MRM rule, it
aborts the MRM run.
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

28

The RPL Palette
Units in RPL

28
2.9 Units in RPL

In Simulation, all computations are done in internal units, that is cms, m, m3, etc. In RPL, computations
are performed in user units. Further:
• You can use any units, even different than slot units.
• Unit types must always be consistent
• When units are not consistent one value is converted to the other (i.e. 20 cfs + 40 cms)
The unit syntax is “units” with the quotes. But quotes are not necessary unless a “ – ” or “ / ” is used,
like “acre-ft”.

2.9.1 Unit operators

Following are the operators available when specifying RPL units:
• “-” multiplication operator (ex. “acre-ft”)
• “/” division operator (ex. “m/s”)
• “^” raised to the power of". (ex. “m^2”)
• giga = 1e9 (ex. “giga-cfs”)
• mega = 1e6
• kilo = 1000
• pico = 1e-12

2.9.2 Slot Value Units

When a RPL expression accesses a value on a slot, there are several options for how the slot value is
represented internally. You have some control by specifying a command line argument, click HERE

Add Comment comment

<comment>
Inserts a user specified in-line comment above the selected RPL expres-
sion or RPL statement. A separate dialog is opened that allows the user to
type in a comment. In the RPL editor, the comment is displayed with #
characters on the left, lines wrapped as they were in the comment editor
dialog, and text in red (or user-specified comment color HERE (Section
6.2.2)). Double clicking the comment reopens the edit dialog.
For a given RPL dialog, the inline comments can be hidden or shown
using the View -> Show Comments menu or by checking the
Show: Comments toggle at the bottom of the dialog.

Delete Comment Deletes comment
Deletes the selected comment. Comments can also be deleted by selecting
the comment, then using the Edit -> Delete menu or using the Delete
key.

Button Evaluates to: Unspecified Form and Description
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

29

The RPL Palette
Units in RPL

29
(BatchMode.pdf, Section 2) for more information on command line arguments. Following is a description
of the various ways to represent the slot values:

The RPL slot value representation scheme has two primary impacts:
• Numerical accuracy of the computation - the representation scheme affects the magnitude of the RPL

values and so impacts numerical accuracy. Generally speaking the greatest accuracy is expected when
using values of moderate magnitude. For many models, this consideration favors the "user" represen-
tation.

• Diagnostics - Sometimes diagnostics present values in a form related to their internal representation.
In most cases, this consideration favors the "user" representation.

A command line argument can be used to control the RPL slot unit representation. the argument is
"--rplslotvalunits" and it requires an argument as listed in the above table. Using the default “mixed”
units will reproduce results in your model but you may consider using the “user” option for diagnostic
and/or accuracy purposes.

Type Description --rplslotvalunits
argument

mixed
The slot's user scale and standard units. This was the
original representation, the only possibility until now,
and is the current default.

mixed

standard A scale of 1.0 and the slot's standard units std

user
The slot's user scale and user units, unless the units are
time-varying (e.g., acre-feet/month), in which case a
scale of 1.0 and standard unit is used.

user
RiverWare Technical Documentation: RPL Data Types and Palette
Revised: 7/19/18

	Search All
	Search This Document
	Main Menu
	¯¯¯¯¯¯¯¯¯¯
	RPL Data Types and Palette
	1. Expression Data Types
	1.1 NUMERIC
	1.2 BOOLEAN
	1.3 DATETIME
	1.3.1 Fully or Partially Specified
	1.3.2 Formats
	1.3.3 Examples
	1.3.4 Datetime Math

	1.4 STRING
	1.5 OBJECT
	1.6 SLOT
	1.7 LIST

	2. The RPL Palette
	2.1 Mathematical Operation Buttons:
	2.2 Logical Operation Buttons:
	2.2.1 Setting Tolerance for use in the logical comparison operators

	2.3 Object and Slot Lookup and Assignment Buttons:
	2.4 Unary Operation Buttons:
	2.5 Values
	2.5.1 Buttons for Common Values
	2.5.2 Buttons for Setting Flags on Slots

	2.6 Conditional and Iterative Operations Buttons:
	2.7 List Operation Buttons:
	2.8 Miscellaneous Buttons:
	2.9 Units in RPL
	2.9.1 Unit operators
	2.9.2 Slot Value Units

	Main Menu
	Search This Document
	Search All

